eMTR Modbus 协议 Ver1.5

时间 2022 年 11 月

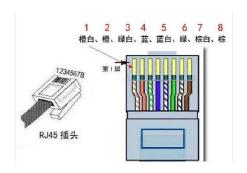
文档修订记录表

序号	版本	修订原因及修订内容	拟制人/ 修订人	修订时间
1	V1.0	新拟制	李春录 郭世军	2021-4-30
2	V1.1	更新 SPDS 开关状态	郭世军	2021-9-16
3	V1.2	更新 SPDS、BMS 协议系数	郭世军	2022-2-10
4	V1.3	机柜信息增加干接点设备告警	郭世军	2022-5-06
5	V1.4	增加拓展控制模块	郭世军	2022-9-05
6	V1.5	增加空调告警信息	郭世军	2022-11-10

目录

еМТ	TR Modbus 协议 Ver1.5	1
1.1	协议简介 Protocol Introduction	3
1.2	接口方式 Interface	3
	1.2.1 ModbusRTU 接口	3
	1.2.2 ModbusTCP 接口	5
1.3	协议格式 Protocol format	5
	1.3.1 RTU 模式的帧格式 Format of the RTU mode	5
	1.3.2 ModbusTCP 报文格式	7
1.4	响应信息分类	8
1.5	功能码	9
1.6	通信寄存器地址	10
	1.6.1 机柜信息	10
	1.6.2 UPS	13
	1.6.3 空调	16
	1.6.4 温湿度	19
	1.6.5 水浸	20
	1.6.6 电量仪	21
	1.6.7 智能配电柜	23
	1.6.8 电池巡检仪	26
	1.6.9 PDU	29
	1.6.10 拓展控制模块	31
1.7	ModbusTCP 查询实例	33

1.1 协议简介 Protocol Introduction


Modbus 协议是应用于控制器上的一种通用语言。通过该协议使动环主机经网络和其他设备之间可以进行通信。本通信采用应答方式,由主设备发起请求,从设备执行请求并且应答。在同一时间,总线上只能有一个主设备,但可以有一个或多个从设备,从设备需通过地址设置加以区分,从设备可设置的地址范围为0x01~0xFF。

1.2 接口方式 Interface

1.2.1 ModbusRTU 接口

eMTR 提供了如上图所示 RJ45 接口, 其中 RJ45 接口引脚线序如下图:

线序对应说明如下:

	线序	说明
	1	485+
	2	485-
	3	TXD_232
DIAE	4	+12V
RJ45	5	+12V
	6	RXD_232
	7	GND
	8	GND

波特率:可设置为 1200bps、2400 bps、4800 bps、9600 bps、19200 bps

数据长度: 8位

奇偶校验位: 无校验

停止位:1位

Baud rate: 1200bps, 2400 bps, 4800 bps, 9600 bps, 19200 bps

Data length: 8bit

Parity: None

Stop bit: 1bit

登录动环管理网页【系统设置】→【modbus 服务器设置】可设置波特率(默认: 9600)、modbus 地址(默认:1)、端口号(默认:502).

1.2.2 ModbusTCP 接口

ModbusTCP 接口如下图所示:

1.3 协议格式 Protocol format

本协议支持 Modbus 通信模式可选,包括 RTU 模式和 modbus_TCP 模式: This protocol supports RTU mode and modbus TCP mode.

1.3.1 RTU 模式的帧格式 Format of the RTU mode

控制器以 RTU 模式在 Modbus 总线上进行通讯时,信息中的每 8 bit 字节包含 2 个 4 bit 十六进制的字符。RTU 模式中每个字节的格式为:

编码系统 : 8位二进制;

起始位:1位

数据位: 8位数据位,低位先送;

奇/偶校验 : 奇校验或者偶校验时为1位; 无奇偶校验时该位为1位停

止位;

停止位:1位

错误校验区: 循环冗余校验(CRC)

The controller communicate through Modbus by RTU mode, each information byte (8 bits) consists of 2 parts of 4-bit hexadecimal characters. The fomat of the information byte is as below

Coding system: 8-bit binary

Staring bit: one bit

Data bit: 8 bits of data, lower bits first send

Patity check: odd or even check as one bit, no check as 1 stop bit

Stop bit: 1 bit

Error check: cycle redundancy check (CRC)

RTU 模式的请求帧格式为:

起始	设备地址	功能代码	寄存器 起始地址	寄存器 个数	CRC 低字节	CRC 高字节	结束
至少 3.5 个 字符空闲时间	8 bit	8 bit	16 bit	16 bit	8 bit	8 bit	至少 3.5 个 字符空闲时间

Request-to-send format in RTU mode

Start	Device address	Functional code	Register start adress	Register digit	CRC Lower byte	CRC High byte	End
Free time for 3.5							Free time for 3.5
characters at	8 bit	8 bit	16 bit	16 bit	8 bit	8 bit	characters at
least							least

其中 RTU 模式字符传输格式采用 11 位传输,其中数据位为 8 位;位序列为:

起始位	1	2	3	4	5	6	7	8	停止位(奇/偶校验位)	停止位
In RTU 1	mode,	the ch	aract	ers aı	e trai	nsmit	ted w	ith 11	l-bit format,as following	
Start bit	1	2	3	4	5	6	7	8	Stop bit(Patity check)	Stop bit

RTU 模式的响应帧格式为:

起始	设备地址	功能代码	数据	CRC 低字节	CRC 高字节	结束
至少 3.5 个	0 1.4	0 1.4	0 & 1.:4	0 1.:4	0 1.4	至少 3.5 个
字符空闲时间	8 bit	8 bit	8n 个 bit	8 bit	8 bit	字符空闲时间

The RTU mode response frame format:

Start	Device address	Functional Code	Data	CRC Lower byte	CRC High byte	End
Free time for 3.5 characters at least	8 bit	8 bit	8n 个 bit	8 bit	8 bit	Free time for 3.5 characters at least

消息发送至少需要 3.5 个字符时间的停顿间隔开始。在最后一个传输字符之后,需要至少 3.5 个字符时间的停顿来标定消息的结束。一个新的消息可在此停顿后开始。

整个消息帧必须作为一连续的流转输。如果在帧完成之前两个字符间有超过 1.5 个字符空闲的停顿时间,认为帧错误,停止接收,并重新启动接收。也就是 要保证两个帧间的间隔至少大于 3.5 个字符的时间,1.5 个字符时间和 3.5 个字 符时间与具体的通信波特率有关,计算方法如下: 如通信波特率为 9600,那么

- 1.5 个字符间隔时间 = $(1/9600) \times 11 \times 1.5 \times 1000 = 1.72$ ms
- 3.5 个字符间隔时间 = $(1/9600) \times 11 \times 3.5 \times 1000 = 4.01$ ms

【例如】***

请求帧信息:请求 1 号机的数据,位置为:寄存器起始地址 0002,寄存器个数为 1 个

	地址	功能码	寄存器起	始地址	寄存器	个数	CRC 杉	泛验
数据	0x01	0x03	0x00	0x02	0x00	0x01	0x25	0xCA
字节数	1	1	2	2	2	2		2

响应帧信息: 1号机的响应帧

	地址	功能码	返回数据字节数	数据内	容	CRC 校	泛 验
数据	0x01	0x03	0x02	0x12	0x22	0xE9	0x5C
字节数	1	1	1	2	2	2	2

1.3.2 ModbusTCP 报文格式

ModbusTCP 协议格式如下:

MBAP	功能码	数据
------	-----	----

请求报文:

00 00 00 00 00 06 09 03 00 04 00 01

根据上面的协议格式从左到右:

00 00 为传输标识符; 00 00 协议标识符(这里是 modbus 协议); 00 06 报文后边的字节数;

09 单元标识符 (比如 IP 地址: 192.168.0.9 这个地址的从设备); 03 功能码(读保持寄存器的值); 00 04 Modbus 起始地址; 00 01 读取寄存器的个数(这里读取一个寄存器 一个寄存器 2 个字节);

响应报文:

 $00 \ 00 \ 00 \ 00 \ 00 \ 05 \ 09 \ 03 \ 02 \ 00 \ 05$

从左到右:

00 00 为传输标识符(与请求报文一致);00 00 协议标识符;00 05 报文后边的字节数;09 单元标识符;03 功能码;02 后边的字节数;00 05 具体数据。

1.4 响应信息分类

主机向从机设备发送查询并希望有一个正常响应,主机查询中有可能产生 4 种事件:

- (1) 从机接收查询,无通讯错误,正常处理信息,则返回一个正常响应事件。
- (2)由于通讯出错,从机不能接收查询数据,因而不返回响应。此时,主机依靠处理程序判定为查询超时。
- (3) 若从机接收查询,发现有(LRC或CRC)通讯错误,不返回响应,此时依靠主机处理程序判定为查询超时。
- (4) 从机接收查询,无通讯错误,但无法处理(如读不存在的寄存器地址或错误的寄存器个数)时,向主机报告错误的性质。

向主机报告错误的响应信息有2个与正常响应不相同的区域:

功能代码区: 正常响应时,从机的响应功能代码区,带原查询的功能代码。 所有功能代码的 MSB 为 0 (其值低于 80H)。不正常响应时,从机把功能代码的 MSB 置为 1,使功能代码值大于 80H,高于正常响应的值。这样,主机应用程序能识 别不正常响应事件,能检查不正常代码的数据区。

数据区: 正常响应中,数据区含有(按查询要求给出的)数据或统计值,在不正常响应中,数据区为一个不正常代码,它说明从机产生不正常响应的条件和原因。

不正常代码及含义如下表所示:

代码	名称	含义				
0x01	不合法功能代码	从机接收的是一种不能执行的功能代码。发出查询命令后,				
UXU1	小百石切配八吗	该代码指示无程序功能。				
0x02	不合法数据地址	接收的数据地址,是从机不允许的地址;如:寄存器起始地				
UXU2	小百亿数据地址	址错误,查询的寄存器个数错误。				

【例如】***

RTU 模式:

命令信息:请求1号机的数据,位置为:寄存器起始地址0066,寄存器个数为2个

	地址	功能码	寄存器走	已始地址	寄存器个数		CRC 校验	
数据	0x01	0x03	0x00	0x66	0x00	0x02	0x24	0x14

响应信息: 1 号机的响应帧,因为寄存器起始地址错误,因此返回信息为不合法的数据地址

	地址	功能码	数据内容	CRC 校验	
数据	0x01	0x83	0x02	0xC0	0xF1

1.5 功能码

功能码	名称	作用
0x01	读线圈	在一个远程设备中,使用该功能码读取线圈(作为获取告警状态功能码)
0x05	写单个线圈	在一个远程设备上,使用该功能码写单个输出为 ON 或 OFF。
0x03	读取保持寄存器	在一个或多个保持寄存器取得当前的二进制值(作为获取模拟量功能码)
0x06	预置单寄存器	把具体二进制值装入一个保持寄存器(作为写入工装设置数据)

1.6 通信寄存器地址

1.6.1 机柜信息

0x01 功能码查询;

实际查询地址=地址偏移+寄存器 ID

设备个数最多1个

地址偏移=0

寄存器 ID	变量名	类型	权限	描述
0	综合告警	bit	只读	0: 正常; 1: 告警;
1	前门使能状态	bit	只读	0: 禁用; 1: 使能;
2	前门开关状态	bit	只读	0: 闭合; 1: 打开;
3	后门使能状态	bit	只读	0: 禁用; 1: 使能;
4	后门开关状态	bit	只读	0: 闭合; 1: 打开;
5	前门应急风扇状态	bit	只读	0: 停止; 1: 运行;
6	后门应急风扇状态	bit	只读	0: 停止; 1: 运行;
7	冷通道温度过高告警	bit	只读	0: 正常; 1: 告警;
8	冷通道温度过低告警	bit	只读	0: 正常; 1: 告警;
9	冷通道湿度过高告警	bit	只读	0: 正常; 1: 告警;
10	冷通道湿度过低告警	bit	只读	0: 正常; 1: 告警;
11	热通道温度过高告警	bit	只读	0: 正常; 1: 告警;
12	热通道温度过低告警	bit	只读	0: 正常; 1: 告警;
13	热通道湿度过高告警	bit	只读	0: 正常; 1: 告警;
14	热通道湿度过低告警	bit	只读	0: 正常; 1: 告警;
15	烟感使能状态	bit	只读	0: 禁用; 1: 使能;
16	系统烟感告警	bit	只读	0: 正常; 1: 告警;
17	红外使能状态	bit	只读	0: 禁用; 1: 使能;
18	系统红外入侵告警	bit	只读	0: 正常; 1: 告警;
19	红外拆除告警	bit	只读	0: 正常; 1: 告警;
20	漏水使能状态	bit	只读	0: 禁用; 1: 使能;
21	漏水告警	bit	只读	0: 正常; 1: 告警;
22	消防告警使能状态	bit	只读	0: 禁用; 1: 使能;
23	消防告警	bit	只读	0: 正常; 1: 告警;
24	SD卡移除告警	bit	只读	0: 正常; 1: 告警;

25	SD卡剩余空间不足告警	bit	只读	0: 正常; 1: 告警;
26	内存剩余空间不足告警	bit	只读	0: 正常; 1: 告警;
27	数据存储失败告警	bit	只读	0: 正常; 1: 告警;
28	弹门器弹门告警	bit	只读	0: 正常; 1: 弹门;
29	市电异常告警	bit	只读	0: 正常; 1: 告警;
30	过滤网阻塞告警	bit	只读	0: 正常; 1: 告警;
31	干接点设备告警1	bit	只读	0: 正常; 1: 告警;
32	干接点设备告警 2	bit	只读	0: 正常; 1: 告警;
33	干接点设备告警3	bit	只读	0: 正常; 1: 告警;
•••••		•••••	•••••	•••••
95	干接点设备告警 65	bit	只读	0: 正常; 1: 告警;

0x03 功能码查询; 0x06 功能码设置;

实际查询地址=地址偏移+寄存器 ID

设备个数最多1个

地址偏移=0

寄存器 ID	变量名	类 型	权 限	系数	单 位	描述
0	PUE	int16	只读	0.1		
1	冷通道平均温度	int16	只读	0.1	$^{\circ}$	
2	冷通道最低温度	int16	只读	0.1	$^{\circ}$	
3	冷通道最高温度	int16	只读	0.1	$^{\circ}$	
4	冷通道平均湿度	int16	只读	0.1	%	
5	热通道平均温度	int16	只读	0.1	$^{\circ}$	
6	热通道最低温度	int16	只读	0.1	$^{\circ}$	
7	热通道最高温度	int16	只读	0.1	$^{\circ}$	
8	热通道平均湿度	int16	只读	0.1	%	
9	外部环境平均温度	int16	只读	0.1	$^{\circ}$	
10	外部环境最低温度	int16	只读	0.1	$^{\circ}$	
11	外部环境最高温度	int16	只读	0.1	$^{\circ}$	
12	外部环境平均湿度	int16	只读	0.1	%	
13	空调平均温度	int16	只读	0.1	$^{\circ}$	
14	空调最高温度	int16	只读	0.1	$^{\circ}$	
15	空调最低温度	int16	只读	0.1	$^{\circ}$	
16	系统平均温度	int16	只读	0.1	$^{\circ}$	
17	系统平均湿度	int16	只读	0.1	%	

18	保留				
	保留				
••	保留				
	保留				
86	保留				
87	IP 控制方式	int16	读写	1	0: 手动; 1: DHCP;
88	IP 地址 1	int16	读写	1	一个 IP 地址占用四个寄存器,每个寄存器存储
89	IP 地址 2	int16	读写	1	一段,例如: 192.168.1.5,那么"IP地址1"存
90	IP 地址 3	int16	读写	1	放(192),"IP 地址 2" 存放(168),"IP
91	IP 地址 4	int16	读写	1	地址 3" 存放 (1), "IP 地址 4" 存放 (5);
92	子网掩码1	int16	读写	1	子网掩码和网关以此类推;
93	子网掩码 2	int16	读写	1	范寄存器范围: 0-255;
94	子网掩码3	int16	读写	1	
95	子网掩码 4	int16	读写	1	
96	网关 1	int16	读写	1	
97	网关 2	int16	读写	1	
98	网关3	int16	读写	1	
99	网关4	int16	读写	1	
100	IP 设置使能	int16	只写	1	设置完上述参数后,需对此寄存器写 0xFF00,以保存 IP 设置;

1.6.2 UPS

0x01 功能码查询;

实际查询地址=地址偏移+寄存器 ID+i*单个设备占用的寄存器总数

设备个数最多 30 个, i 为设备 ID 从 0 开始

地址偏移=101,单个设备占用的寄存器总数 = 100

寄存器 ID	变量名	类型	权限	描述
0	使能状态	bit	只读	0: 系统中无此设备; 1: 系统中存在此设备;
1	通信状态	bit	只读	0: 通信断开; 1: 通信正常;
2	综合告警	bit	只读	0: 正常; 1: 告警;
3	EPO	bit	只读	0: 正常; 1: 告警;
4	风扇故障	bit	只读	0: 正常; 1: 告警;
5	UPS 过温	bit	只读	0: 正常; 1: 告警;
6	整流器故障	bit	只读	0: 正常; 1: 告警;
7	主路异常	bit	只读	0: 正常; 1: 告警;
8	旁路异常	bit	只读	0: 正常; 1: 告警;
9	旁路电压异常	bit	只读	0: 正常; 1: 告警;
10	旁路超跟踪	bit	只读	0: 正常; 1: 告警;
11	旁路过载	bit	只读	0: 正常; 1: 告警;
12	旁路过载超时	bit	只读	0: 正常; 1: 告警;
13	维持空开闭合	bit	只读	0: 正常; 1: 告警;
14	逆变器异常	bit	只读	0: 正常; 1: 告警;
15	逆变过载	bit	只读	0: 正常; 1: 告警;
16	逆变过载超时	bit	只读	0: 正常; 1: 告警;
17	输出短路	bit	只读	0: 正常; 1: 告警;
18	电池低压	bit	只读	0: 正常; 1: 告警;
19	电池 EOD	bit	只读	0: 正常; 1: 告警;
20	电池接反	bit	只读	0: 正常; 1: 告警;
21	UPS 禁止开机	bit	只读	0: 正常; 1: 告警;
22	手动切旁路	bit	只读	0: 正常; 1: 告警;

0x03 功能码查询;

实际查询地址=地址偏移+寄存器 ID+i*单个设备占用的寄存器总数

设备个数最多 30 个, i 为设备 ID 从 0 开始

地址偏移=101,单个设备占用的寄存器总数 = 100

寄 存 器 ID	变量名	类型	权限	系数	単位	描述
0	旁路电压 ph_A	int16	只读	0.1	V	
1	旁路电压 ph_B	int16	只读	0.1	V	
2	旁路电压 ph_C	int16	只读	0.1	V	
3	旁路电流 ph_A	int16	只读	0.1	A	
4	旁路电流 ph_B	int16	只读	0.1	A	
5	旁路电流 ph_C	int16	只读	0.1	A	
6	旁路频率 ph_A	int16	只读	0.01	Hz	
7	旁路频率 ph_B	int16	只读	0.01	Hz	
8	旁路频率 ph_C	int16	只读	0.01	Hz	
9	旁路 PF ph_A	int16	只读	0.01		
10	旁路 PF ph_B	int16	只读	0.01		
11	旁路 PF ph_C	int16	只读	0.01		
12	输入电压 ph_A	int16	只读	0.1	V	
13	输入电压 ph_B	int16	只读	0.1	V	
14	输入电压 ph_C	int16	只读	0.1	V	
15	输入电流 ph_A	int16	只读	0.1	A	
16	输入电流 ph_B	int16	只读	0.1	A	
17	输入电流 ph_C	int16	只读	0.1	A	
18	输入频率 ph_A	int16	只读	0.01	Hz	
19	输入频率 ph_B	int16	只读	0.01	Hz	
20	输入频率 ph_C	int16	只读	0.01	Hz	
21	输入 PF ph_A	int16	只读	0.01		
22	输入 PF ph_B	int16	只读	0.01		
23	输入 PF ph_C	int16	只读	0.01		
24	输出电压 ph_A	int16	只读	0.1	V	
25	输出电压 ph_B	int16	只读	0.1	V	
26	输出电压 ph_C	int16	只读	0.1	V	
27	输出电流 ph_A	int16	只读	0.1	A	
28	输出电流 ph_B	int16	只读	0.1	A	
29	输出电流 ph_C	int16	只读	0.1	A	

30	输出频率 ph_A	int16	只读	0.01	Hz	
31	输出频率 ph_B	int16	只读	0.01	Hz	
32	输出频率 ph_C	int16	只读	0.01	Hz	
33	输出 PF ph_A	int16	只读	0.01		
34	输出 PF ph_B	int16	只读	0.01		
35	输出 PF ph_C	int16	只读	0.01		
36	输出视在功率 ph_A	int16	只读	0.1	kVA	
37	输出视在功率 ph_B	int16	只读	0.1	kVA	
38	输出视在功率 ph_C	int16	只读	0.1	kVA	
39	输出有功功率 ph_A	int16	只读	0.1	kW	
40	输出有功功率 ph_B	int16	只读	0.1	kW	
41	输出有功功率 ph_C	int16	只读	0.1	kW	
42	负载百分比 ph_A	int16	只读	0.1	%	
43	负载百分比 ph_B	int16	只读	0.1	%	
44	负载百分比 ph_C	int16	只读	0.1	%	
45	环境温度	int16	只读	0.1	$^{\circ}$	
46	正电池组电压	int16	只读	0.1	V	
47	负电池组电压	int16	只读	0.1	V	
48	正电池组电流	int16	只读	0.1	A	
49	负电池组电流	int16	只读	0.1	A	
50	电池温度	int16	只读	0.1	$^{\circ}\mathbb{C}$	
51	电池剩余时间	int16	只读	0.1	分钟	
52	电池容量百分比	int16	只读	0.1	%	
53	供电方式	uint16	只读	1		0: 均不供电; 1: UPS 供电; 2: 旁路供电; 3: 电池放电;
54	电池状态	uint16	只读	1		0: 电池未连接; 1: 电池未工作; 2: 电池浮充; 3: 电池均充; 4: 电池 放电; 5: 电池未检测;
55	整流器状态	uint16	只读	1		0: 关闭; 1: 软启动; 2: 正常工作;
56	电池节数	uint16	只读	1		
57	电池额定容量	uint16	只读	1	AH	
58	额定输入电压	uint16	只读	1	V	
59	额定输入频率	uint16	只读	1	Hz	
60	额定输出电压	uint16	只读	1	V	
61	额定输出频率	uint16	只读	1	Hz	

1.6.3 空调

0x01 功能码查询; 0x05 功能码设置;

实际查询地址=地址偏移+寄存器 ID+i*单个设备占用的寄存器总数

设备个数最多8个,i为设备ID从0开始

地址偏移=3101,单个设备占用的寄存器总数 = 100

寄存 器 ID	变量名	类型	权限	描述
0	使能状态	bit	只读	0: 系统中无此设备; 1: 系统中存在此设备;
1	通信状态	bit	只读	0: 通信断开; 1: 通信正常;
2	综合告警	bit	只读	0: 正常; 1: 告警;
3	制冷状态	bit	只读	0: 停止, 1: 开启
4	防冻保护	bit	只读	0: 正常; 1: 告警;
5	VFD 通讯中断	bit	只读	0: 正常; 1: 告警;
6	NTC1(防冻)故障	bit	只读	0: 正常; 1: 告警;
7	VFD 告警	bit	只读	0: 正常; 1: 告警;
8	VFD 故障	bit	只读	0: 正常; 1: 告警;
9	送风温度故障	bit	只读	0: 正常; 1: 告警;
10	高温报警	bit	只读	0: 正常; 1: 告警;
11	低温报警	bit	只读	0: 正常; 1: 告警;
12	高压报警	bit	只读	0: 正常; 1: 告警;
13	高压锁定	bit	只读	0: 正常; 1: 告警;
14	低压报警	bit	只读	0: 正常; 1: 告警;
15	低压锁定	bit	只读	0: 正常; 1: 告警;
16	排气报警	bit	只读	0: 正常; 1: 告警;
17	内风机故障	bit	只读	0: 正常; 1: 告警;
18	回风温度故障	bit	只读	0: 正常; 1: 告警;
19	远程关机报警	bit	只读	0: 开机; 1: 关机;
20	电源丢失报警	bit	只读	0: 正常; 1: 告警;
21	监控关机	bit	读写	查询: 0: 开机; 1: 关机; 设置: 0x0000 开机; 0xFF00 关机
22	高湿告警	bit	只读	0: 正常; 1: 告警
23	低湿报警	bit	只读	0: 正常; 1: 告警
24	地板溢水	bit	只读	0: 正常; 1: 告警
25	气流丢失	bit	只读	0: 正常; 1: 告警

26	+p>目 田 +ん//文	1.4	口生	
26	加湿器故障	bit	只读	0: 正常; 1: 故障
27	加热器故障	bit	只读	0: 正常; 1: 故障
28	烟感告警	bit	只读	0: 正常; 1: 告警
29	压缩机故障	bit	只读	0: 正常; 1: 故障
30	防尘网故障	bit	只读	0: 正常; 1: 故障
31	排水故障	bit	只读	0: 正常; 1: 故障
32	电源异常	bit	只读	0: 正常; 1: 告警
33	高水位告警	bit	只读	0: 正常; 1: 告警
34	告警保留1	bit	只读	0: 正常; 1: 告警
35	告警保留2	bit	只读	0: 正常; 1: 告警
36	告警保留3	bit	只读	0: 正常; 1: 告警
37	告警保留 4	bit	只读	0: 正常; 1: 告警
38	告警保留 5	bit	只读	0: 正常; 1: 告警
39	告警保留 6	bit	只读	0: 正常; 1: 告警
40	告警保留7	bit	只读	0: 正常; 1: 告警
41	告警保留8	bit	只读	0: 正常; 1: 告警
42	告警保留9	bit	只读	0: 正常; 1: 告警
43	告警保留 10	bit	只读	0: 正常; 1: 告警
44	告警保留 11	bit	只读	0: 正常; 1: 告警
45	告警保留 12	bit	只读	0: 正常; 1: 告警
46	告警保留 13	bit	只读	0: 正常; 1: 告警
47	告警保留 14	bit	只读	0: 正常; 1: 告警
48	告警保留 15	bit	只读	0: 正常; 1: 告警
49	告警保留 16	bit	只读	0: 正常; 1: 告警
50	告警保留 17	bit	只读	0: 正常; 1: 告警

注: 空调告警:【寄存器 ID 22 高湿告警------寄存器 ID 50 告警保留 17】需 eMTR 主机软件版本大于 V1.19.55 才支持查询 (包括 V1.19.55)。

0x03 功能码查询; 0x06 功能码设置;

实际查询地址=地址偏移+寄存器 ID+i*单个设备占用的寄存器总数

设备个数最多8个, i 为设备ID从0开始

地址偏移=3101,单个设备占用的寄存器总数 = 100

寄存 器 ID	变量名	类型	权限	系数	单位	描述
0	回风温度测量值	int16	只读	0.1	$^{\circ}\!\mathbb{C}$	
1	回风湿度测量值	int16	只读	0.1	%	
2	送风温度测量值	int16	只读	0.1	$^{\circ}$	
3	运行状态	int16	只读	1		0: 本地关机; 1 远程关机; 2: 待机; 3: 监控关机; 4: 电源保护; 5: 气流保护; 6: 压机保护; 7: 系统开机;
4	制冷温度设定值	int16	读写	0.1	$^{\circ}$	范围由具体通信协议确定
5	制冷回差	int16	读写	0.1	${\mathbb C}$	范围由具体通信协议确定
6	高温告警点	int16	读写	0.1	$^{\circ}$	范围由具体通信协议确定
7	低温告警点	int16	读写	0.1	$^{\circ}\mathbb{C}$	范围由具体通信协议确定
8	控制方式	int16	只读	1		0: 回风; 1: 送风;

1.6.4 温湿度

0x01 功能码查询;

实际查询地址=地址偏移+寄存器 ID+i*单个设备占用的寄存器总数

设备个数最多 62 个, i 为设备 ID 从 0 开始

地址偏移=3901,单个设备占用的寄存器总数 = 10

寄存器 ID	变量名	类型	权限	描述			
0	使能状态	bit	只读	0: 系统中无此设备; 1: 系统中存在此 设备;			
1	通信状态	bit	只读	0: 通信断开; 1: 通信正常;			
2	综合告警	bit	只读	0: 正常; 1: 告警;			
3	温度过高	bit	只读	0: 正常; 1: 告警;			
4	温度过低	bit	只读	0: 正常; 1: 告警;			
5	湿度过高	bit	只读	0: 正常; 1: 告警;			
6	湿度过低	bit	只读	0: 正常; 1: 告警;			

0x03 功能码查询;

实际查询地址=地址偏移+寄存器 ID+i*单个设备占用的寄存器总数

设备个数最多 62 个, i 为设备 ID 从 0 开始

地址偏移=3901,单个设备占用的寄存器总数 = 10

寄存器 ID	变量名	类型	权限	系数	单位	描述
0	温度	int16	只读	0.1	$^{\circ}\!\mathrm{C}$	
1	湿度	int16	只读	0.1	%	

1.6.5 水浸

0x01 功能码查询;

实际查询地址=地址偏移+寄存器 ID+i*单个设备占用的寄存器总数

设备个数最多8个, i 为设备 ID 从0开始

地址偏移= 4521, 单个设备占用的寄存器总数 = 10

寄存器 ID	变量名	类型	权限	描述
0	使能状态	bit	只读	0: 系统中无此设备; 1: 系统中存在此设备;
1	通信状态	bit	只读	0: 通信断开; 1: 通信正常;
2	漏水告警	bit	只读	0: 正常; 1: 告警;
3	线缆异常	bit	只读	0: 正常; 1: 告警;

0x03 功能码查询;

实际查询地址=地址偏移+寄存器 ID+i*单个设备占用的寄存器总数

设备个数最多8个, i 为设备ID从0开始

地址偏移= 4521, 单个设备占用的寄存器总数 = 10

寄存器 ID	变量名	类型	权限	系数	単位	描述
0	漏水位置	int16	只读	0.1	m	此值为 0 表示未漏水,或者不支持漏水定位;

1.6.6 电量仪

0x01 功能码查询;

实际查询地址=地址偏移+寄存器 ID+i*单个设备占用的寄存器总数

设备个数最多 16 个, i 为设备 ID 从 0 开始

地址偏移=4601,单个设备占用的寄存器总数=50

寄存器 ID	变量名	类型	权限	描述		
0	使能状态	bit	只读	0: 系统中无此设备; 1: 系统中存在此设备;		
1	通信状态	bit	只读	0: 通信断开; 1: 通信正常;		

0x03 功能码查询;

实际查询地址=地址偏移+寄存器 ID+i*单个设备占用的寄存器总数

设备个数最多 16 个, i 为设备 ID 从 0 开始

地址偏移=4601,单个设备占用的寄存器总数=50

寄存器 ID	变量名	类型	权限	系数	单位	描述
0	相电压_PhA	int16	只读	0.1	V	
1	相电压_PhB	int16	只读	0.1	V	
2	相电压_PhC	int16	只读	0.1	V	
3	线电压_AB	int16	只读	0.1	V	
4	线电压_BC	int16	只读	0.1	V	
5	线电压_CA	int16	只读	0.1	V	
6	电流_PhA	int16	只读	0.1	A	
7	电流_PhB	int16	只读	0.1	A	
8	电流_PhC	int16	只读	0.1	A	
9	N线电流	int16	只读	0.1	A	
10	频率	int16	只读	0.01	Hz	
11	有功功率_PhA	int16	只读	0.1	kW	
12	有功功率_PhB	int16	只读	0.1	kW	
13	有功功率_PhC	int16	只读	0.1	kW	
14	无功功率_PhA	int16	只读	0.1	kVar	
15	无功功率_PhB	int16	只读	0.1	kVar	
16	无功功率_PhC	int16	只读	0.1	kVar	
17	视在功率_PhA	int16	只读	0.1	kVA	
18	视在功率_PhB	int16	只读	0.1	kVA	
19	视在功率_PhC	int16	只读	0.1	kVA	
20	功率因数_PhA	int16	只读	0.01		
21	功率因数_PhB	int16	只读	0.01		
22	功率因数_PhC	int16	只读	0.01		
23	有功电能高位	uint16	只读	1	kWH	高 16 位
24	有功电能低位	uint16	只读	1	kWH	低 16 位
25	无功电能高位	uint16	只读	1	kVarH	高 16 位
26	无功电能低位	uint16	只读	1	kVarH	低 16 位

1.6.7 智能配电柜

0x01 功能码查询;

实际查询地址=地址偏移+寄存器 ID+i*单个设备占用的寄存器总数

设备个数最多8个, i 为设备ID从0开始

地址偏移= 5401,单个设备占用的寄存器总数 = 1400

寄存器 ID	变量名	类型	权限	描述
0	使能状态	bit	只读	0: 系统中无此设备; 1: 系统中存在此设备;
1	通信状态	bit	只读	0: 通信断开; 1: 通信正常;
2	系统综合告警	bit	只读	0: 正常; 1: 告警;
3	系统保留			
4	系统保留			
5	系统保留			
6	系统保留			
7	系统保留			
8-15 为支路状态,每个支路占	8个寄存器,共120个支路	5 ,范围: 8	3-967	
8	支路1开关状态	bit	只读	0: 闭合; 1: 断开;
9	支路1电流高于上限	bit	只读	0: 正常; 1: 告警;
10	支路1电流低于下限	bit	只读	0: 正常; 1: 告警;
11	支路1保留			
12	支路1保留			
13	支路1保留			
14	支路1保留			
15	支路1保留			

0x03 功能码查询;

实际查询地址=地址偏移+寄存器 ID+i*单个设备占用的寄存器总数

设备个数最多8个,i为设备ID从0开始

地址偏移= 5401,单个设备占用的寄存器总数 = 1400

寄存器 ID	变量名	类型	权限	系数	单位	描述
0-49 为主路 1 的数	姓据,每个主路占用 50 个寄存器空间,共 4个	主路,范围	1. 0-199			
0	主路 1 相电压_PhA	uint16	只读	0.1	V	
1	主路 1 相电压_PhB	uint16	只读	0.1	V	
2	主路 1 相电压_PhC	uint16	只读	0.1	V	
3	主路 1 线电压_AB	uint16	只读	0.1	V	
4	主路 1 线电压_BC	uint16	只读	0.1	V	
5	主路 1 线电压_CA	uint16	只读	0.1	V	
6	主路 1 电流_PhA	uint16	只读	0.1	A	
7	主路 1 电流_PhB	uint16	只读	0.1	A	
8	主路 1 电流_PhC	uint16	只读	0.1	A	
9	主路 1N 线电流	uint16	只读	0.1	A	
10	主路1频率	uint16	只读	0.1	Hz	
11	主路1保留	uint16	只读			
12	主路1保留	uint16	只读			
13	主路1有功功率_PhA	uint16	只读	0.01	kW	
14	主路 1 有功功率_PhB	uint16	只读	0.01	kW	
15	主路 1 有功功率_PhC	uint16	只读	0.01	kW	
16	主路 1 无功功率_PhA	uint16	只读	0.01	kVar	
17	主路 1 无功功率_PhB	uint16	只读	0.01	kVar	
18	主路 1 无功功率_PhC	uint16	只读	0.01	kVar	
19	主路 1 视在功率_PhA	uint16	只读	0.01	kVA	
20	主路 1 视在功率_PhB	uint16	只读	0.01	kVA	
21	主路 1 视在功率_PhC	uint16	只读	0.01	kVA	
22	主路 1 功率因数_PhA	uint16	只读	0.01		
23	主路 1 功率因数_PhB	uint16	只读	0.01		
24	主路 1 功率因数_PhC	uint16	只读	0.01		
25	主路 1 总有功电能高位	uint16	只读	0.1	kWH	高 16 位
26	主路 1 总有功电能低位	uint16	只读	0.1	kWH	低 16 位
27	主路 1 有功电能高位_PhA	uint16	只读	0.1	kWH	高 16 位
28	主路 1 有功电能低位_PhA	uint16	只读	0.1	kWH	低 16

						位
						高 16
29	主路 1 有功电能高位_PhB	uint16	只读	0.1	kWH	位
	THE HANDING TO	unit o	710	0.1	111111	低 16
30	主路 1 有功电能低位_PhB	uint16	只读	0.1	kWH	位
			7100			高 16
31	主路 1 有功电能高位_PhC	uint16	只读	0.1	kWH	位
22						低 16
32	主路 1 有功电能低位_PhC	uint16	只读	0.1	kWH	位
33	主路1保留					
34	主路1保留					
35	主路1保留					
36	主路1保留					
37	主路1保留					
38	主路1保留					
39	主路1保留					
40	主路1保留					
41	主路1保留					
42	主路1保留					
43	主路1保留					
44	主路1保留					
45	主路1保留					
46	主路1保留					
47	主路1保留					
48	主路1保留					
49	主路1保留					
200-209 为支路 1	数据,每个支路占用 10 寄存器空间,共 120 %	个支路,地	址范围:	200-1399		
200	支路1电压	uint16	只读	0.1	V	
201	支路1电流	uint16	只读	0.1	A	
202	支路 1 负载率	uint16	只读	0.1	%	
203	支路1视在功率	uint16	只读	0.01	kVA	
204	支路1有功功率	uint16	只读	0.01	kW	
205	支路1有功电量高位	uint16	只读	0.01	kWh	
206	支路1有功电量低位	uint16	只读	0.01	kWh	
207	支路1保留					
208	支路1保留					
209	支路1保留					

1.6.8 电池巡检仪

0x01 功能码查询;

实际查询地址=地址偏移+寄存器 ID+i*单个设备占用的寄存器总数

设备个数最多 4 个, i 为设备 ID 从 0 开始

地址偏移= 16601, 单个设备占用的寄存器总数 = 3000

寄存器 ID	变量名	类型	权限	描述
0	使能状态	bit	只读	0: 系统中无此设备; 1: 系统中存在此设备;
1	通信状态	bit	只读	0: 通信断开; 1: 通信正常;
2	系统综合告警	bit	只读	0: 正常; 1: 告警;
3	系统保留			
4	系统保留			
5	系统保留			
6	系统保留			
7	系统保留			
8-15 为电池	组1状态,每个电池组占8个寄	存器,共4	〉组,范围: 8	3-39
8	电池组1综合告警	bit	只读	0: 正常; 1: 告警;
9	电池组1电压过高	bit	只读	0: 正常; 1: 告警;
10	电池组1电压过低	bit	只读	0: 正常; 1: 告警;
11	电池组1充电电流告警	bit	只读	0: 正常; 1: 告警;
12	电池组1放电电流告警	bit	只读	0: 正常; 1: 告警;
13	电池组1电池开关断开	bit	只读	0: 正常; 1: 告警;
14	电池组1容量低	bit	只读	0: 正常; 1: 告警;
15	电池组1通信故障	bit	只读	0: 正常; 1: 告警;
40-47 为电流	他单元1状态,每个电池组占8~	个寄存器,共	360 个组,范	五围:40-2919
40	电池单元1电压过高	bit	只读	0: 正常; 1: 告警;
41	电池单元1电压过低	bit	只读	0: 正常; 1: 告警;
42	电池单元1内阻过高	bit	只读	0: 正常; 1: 告警;
43	电池单元1温度过高	bit	只读	0: 正常; 1: 告警;
44	电池单元1内阻差异大	bit	只读	0: 正常; 1: 告警;
45	电池单元1通信异常	bit	只读	0: 正常; 1: 告警;
46	电池单元1电压异常	bit	只读	0: 正常; 1: 告警;
47	电池单元1温度异常	bit	只读	0: 正常; 1: 告警;

0x03 功能码查询;

实际查询地址=地址偏移+寄存器 ID+i*单个设备占用的寄存器总数

设备个数最多4个, i 为设备ID从0开始

地址偏移=16601,单个设备占用的寄存器总数 = 3000

安方思 ID	亦县夕	米	-1 -7 (7)	玄粉	单	描述
寄存器 ID	变量名	类型	权限	系数	位	加 //
0	电池组数	int16	只读	1		
1	系统保留					
2	系统保留					
3	系统保留					
4	系统保留					
5	系统保留					
6	系统保留					
7	系统保留					
8	系统保留					
9	系统保留					
10-39 为电池组 1	的数据,每个组占用 40 个寄存器	器空间,	共4组,氵	范围: 1 0)-169	
10	电池组1电池状态	int16	只读	1		0: 断开; 1: 浮充; 2均充; 3: 放电; 4: 未使用
11	电池组 1 电池 AH	int16	只读	1	AH	
12	电池组1电池节数	int16	只读	1		
13	电池组1电压	int16	只读	0.1	V	
14	电池组1电流	int16	只读	0.1	Α	
15	电池组1平均单体电压	int16	只读	0.001	V	
16	电池组1最大单体电压	int16	只读	0.001	V	
17	电池组 1 最大单体电压 ID	int16	只读	1		
18	电池组1最小单体电压	int16	只读	0.001	V	
19	电池组 1 最小单体电压 ID	int16	只读	1		
20	电池组1平均单体内阻	int16	只读	0.001	mΩ	
21	电池组1最大单体内阻	int16	只读	0.001	mΩ	
22	电池组1最大单体内阻 ID	int16	只读	1		
23	电池组1最小单体内阻	int16	只读	0.001	mΩ	
24	电池组1最小单体内阻 ID	int16	只读	1		
25	电池组1平均单体温度	int16	只读	0.1	$^{\circ}\mathbb{C}$	
26	电池组1最大单体温度	int16	只读	0.1	$^{\circ}\mathbb{C}$	
27	电池组 1 最大单体温度 ID	int16	只读	1		
28	电池组1最小单体温度	int16	只读	0.1	$^{\circ}$ C	
29	电池组1最小单体温度 ID	int16	只读	1		
30	电池组 1SOC	int16	只读	0.1	%	
31	电池组 1SOH	int16	只读	0.1	%	
32	电池组1保留					
33	电池组1保留					
34	电池组1保留					

35	电池组1保留					
36	电池组1保留					
37	电池组1保留					
28	电池组1保留					
29	电池组1保留					
30	电池组1保留					
31	电池组1保留					
32	电池组1保留					
33	电池组1保留					
34	电池组1保留					
35	电池组1保留					
36	电池组1保留					
37	电池组1保留					
38	电池组1保留					
39	电池组1保留					
170-174 为电池单	元1数据,每个电池单元占用5	寄存器。	之间,共 3 0	0 个单	元,地	<u>址范围: 170-1969</u>
170	电池单元1电压	uint16	只读	0.001	V	
171	电池单元1温度	uint16	只读	0.1	$^{\circ}\!\mathbb{C}$	
172	电池单元1内阻	uint16	只读	0.001	mΩ	
173	电池单元1保留		_			
174	电池单元1保留					

1.6.9 PDU

0x01 功能码查询;

实际查询地址=地址偏移+寄存器 ID+i*单个设备占用的寄存器总数

设备个数最多8个, i 为设备ID从0开始

地址偏移=28601,单个设备占用的寄存器总数 = 100

寄存器 ID	变量名	类型	权限	描述
0	使能状态	bit	只读	0: 系统中无此设备; 1: 系统中存在此设备;
1	通信状态	bit	只读	0: 通信断开; 1: 通信正常;
2	综合告警	bit	只读	0: 正常; 1: 告警;
3	电流高于上限	bit	只读	0: 正常; 1: 告警;
4	电流低于下限	bit	只读	0: 正常; 1: 告警;
5	系统保留			
6	系统保留			
7	系统保留			
8-31 为支路	状态,每个支路占1个寄存器,	共24个支路	,范围: 8-31	
8	支路 1 开关状态	bit	只读	0: 断开; 1: 闭合;
31	支路 24 开关状态	bit	只读	0: 断开; 1: 闭合;

0x03 功能码查询;

实际查询地址=地址偏移+寄存器 ID+i*单个设备占用的寄存器总数

设备个数最多8个, i 为设备ID从0开始

地址偏移=28601,单个设备占用的寄存器总数 = 100									
寄存器 ID	变量名	类型	权 限	系 数	单 位	描述			
0	总有功电量高位	uint16	只读	0.1	kWh				
1	总有功电量低位	uint16	只读	0.1	kWh				
2	总电流	int16	只读	0.1	A				
3	额定电流	int16	只读	0.1	A				
4									
5									
6									
7									
8									
10-24 为 A 组	<mark>数据,每组占用 15 个[:]</mark>	<mark>寄存器空</mark>	间,共	ABC E	三组,范	图: 10-54;			
其中支路 1-8	属于 A 组; 支路 9-16	属于B组	1; 支路	17-24	属于C	<mark>组;</mark>			
10	A组电压	int16	只读	0.1	V				
11	A组电流	int16	只读	0.1	A				
12	A 组频率	int16	只读	0.01	Hz				
13	A组功率因数	int16	只读	0.01					
14	A 组视在功率	int16	只读	0.1	kVA				
1			1		1 777	· · · · · · · · · · · · · · · · · · ·			

10	A组电压	int16	只读	0.1	V	
11	A组电流	int16	只读	0.1	A	
12	A 组频率	int16	只读	0.01	Hz	
13	A 组功率因数	int16	只读	0.01		
14	A 组视在功率	int16	只读	0.1	kVA	
15	A组有功功率	int16	只读	0.1	kW	
16	A 组无功功率	int16	只读	0.1	kVar	
17	A 组耗电量高位	int16	只读	0.1	kWh	
18	A 组耗电量低位	int16	只读	0.1	kWh	
19	A组负载百分比	int16	只读	0.1	%	
20	A 组状态	int16	只读	1		Bit0: 第三支路综合告警 Bit1: 第三支路电压高于上限 Bit2: 第三支路电压低于下限 Bit3: 第三支路电流高于上限 Bit4: 第三支路电流低于下限
21	A组保留					
22	A组保留					
23	A组保留					
24	A组保留					

1.6.10 拓展控制模块

0x01 功能码查询;

实际查询地址=地址偏移+寄存器 ID+i*单个设备占用的寄存器总数

设备个数最多1个, i 为设备ID从0开始

地址偏移= 29401,单个设备占用的寄存器总数 = 500

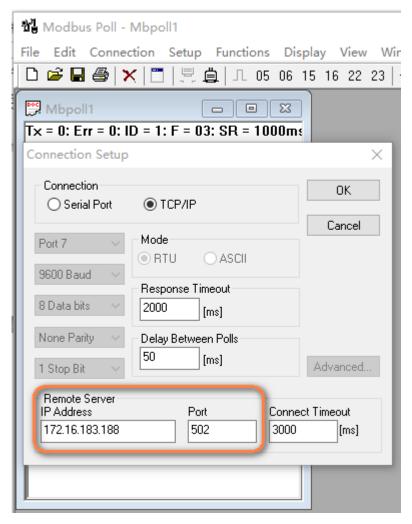
寄存器 ID	变量名	类型	权限	描述
0	使能状态	bit	只读	0: 系统中无此设备; 1: 系统中存在此设备;
1	通信状态	bit	只读	0: 通信断开; 1: 通信正常;
2				
3				
4				
5				

0x03 功能码查询;

实际查询地址=地址偏移+寄存器 ID+i*单个设备占用的寄存器总数

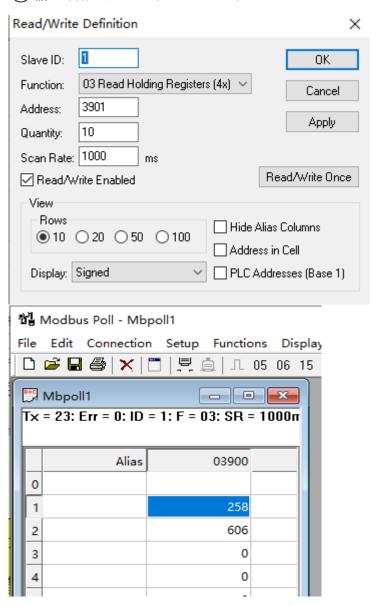
设备个数最多1个, i为设备ID从0开始

地址偏移= 29401,单个设备占用的寄存器总数 = 500


寄 存 器 ID	变量名	类型	权限	系数	单位	描述
0	门禁1标记	uint16	只读	1		门禁 1 标记寄存器, bit0-7, 表示记录类型, 0:无效, 1:正常开门, 2:无权限, 3:非法开门, 4:出门按钮开门, 5:消防联动开门, 6: 紧急开门; Bit8-15 保留
1	门1刷卡卡号高位	uint16	只读	1		高低位组合后进行卡号 ID 解析
2	门1刷卡卡号低位	uint16	只读	1		Bit0-23: 卡号 ID; Bit24-31: 无效;
	••••	••••	••••			

21	门禁 8 标记	uint16	只读	1	门禁8标记寄存器,bit0-7,表示记录类型,0:无效,1:正常开门,2:无权限,3:非法开门,4:出门按钮开门,5:消防联动开门,6:紧急开门;Bit8-15 保留
22	门8刷卡卡号高位	uint16	只读	1	
23	门8刷卡卡号低位	uint16	只读	1	Bit0-23: 卡号 ID; Bit24-31: 无效;


1.7 ModbusTCP 查询实例


- 1.打开查询工具 mbpoll
- 2.检查网络是否畅通,输入动环主机 IP,检查端口信息

- 3、查询温湿度1数据
- 1)到温湿度通讯寄存器地址信息页。

- ② 获取查询功能码为 0X03, 温湿度 1 的温度值实际查询地址 = 3901 +0 +0*10 = 3901
 - ③输入功能码、查询地址,查询。

