交流通断检测系列使用手册 (RS485 版)

V2.0

目录

目園	录	1
前言	늘	2
1 产	· 品介绍	3
	1.1 产品功能	3
	1.2 产品特点	3
	1.3 产品参数	4
	1.4 产品接线	5
2 追	通讯协议	8
	2.1 寄存器类型	8
	2.2 离散输入状态寄存器功能定义	8
	2.3 输入寄存器功能定义	9
	2.4 保持寄存器功能定义	10
	2.5 指令示例	11
3 岁	资料下载	12
	3.1 Modbus RTU 协议手册下载	12
	3.2 中盛综合测试系统下载	12
4 2	公司信息	13
5 产	· 品系列简介	14

前言

中盛科技(东莞)有限公司的交流通断检测系列产品,以其卓越的多功能性为核心优势,能够满足 1~6 路交流通断的检测需求,配合广泛的输入电压适配性,确保了与不同电压标准的设备兼容。产品支持稳定的 RS485 或 CAN 通讯协议,用户可以灵活配置通讯地址和波特率,且这些配置具备掉电保存功能。中盛科技致力于提供创新的检测与控制技术,以及全面的自动化解决方案,凭借深厚的行业经验和对自动化现场的深刻理解,不断追求产品的多样化和高品质,赢得了全球合作伙伴的信赖,致力于与客户共创工业自动化的美好未来。

注: 带前缀 0x 或后缀 H 的数据为十六进制。

1 产品介绍

1.1 产品功能

- 1~6 路交流通断检测;
- 输入电压多量程可选(3-15V/9V-55V/40V-125V/90V-260V/180V-420VAC);
- RS485 通讯,标准 Modbus RTU 协议;
- 地址(1~255)、波特率(4800bps~115200bps)可修改,掉电保存;
- 电源、通讯、输入和输出指示灯,参数复位按钮;
- 硬件、软件双重看门狗, 永不宕机;
- 提供配套的 PC 测试软件, 方便测试、修改参数。

1.2 产品特点

- 台湾光宝双向光耦;
- 内置开关电源电路,供电电压范围宽,转换效率高;
- 电源、通讯均具有防反接保护,过流保护;
- 通讯隔离,隔离电压: 3000V,防静电、雷击浪涌,抗干扰能力强;
- 关键芯片均为全新原装进口;
- 工业级产品,满足不同领域的使用需求;
- 安装方便,标准 C45 (35mm) U 型通用导轨安装或螺钉安装。

1.3 产品参数

产品主要参数如表 1.1 所示。

表 1.1 产品参数

	产品参数							
供电电压	6~36V							
通讯方式	RS485 (非隔离/隔离型)							
输入路数	1~6 路							
输入电压	压 3-15V/9V-55V/40V-125V/90V-260V/180V-420VAC							
输入原理	整流滤波光耦隔离							
通讯协议	Modbus RTU							
	02H 读离散输入状态							
	03H 读保持寄存器							
支持指令	04H 读输入寄存器							
	06H 写单个保持寄存器							
	10H 写多个保持寄存器							
通讯地址	1~255 可设置,掉电保存							
波特率	4800/9600/14400/19200/38400/56000/57600/115200bps 可设置,掉电保存							
通讯距离	0~1200 米, 通过中继器可延长							
参数复位	复位按钮/软件复位							
指示灯	电源/通讯/输入							
看门狗	硬件、软件双重看门狗,永不宕机							
保护功能	过流/过压/反接/防雷击浪涌							
工作温度	-40°C∼+85°C							
工作湿度	0%~95%(无凝结)							
安装方式	标准 C45(35mm)通用导轨							

1.4 产品接线

1.4.1 产品接线表

表 1.2 接线表

	接线表							
标识	功能							
+	供电电源正极 (6~36V DC)							
_	供电电源负极							
A	RS485+							
В	RS485-							
L	输入火线(3-15V/9-55V/40V-125V/90V-260V/180V-420VAC)							
N	输入零线							

1.4.2 电源与通讯接线

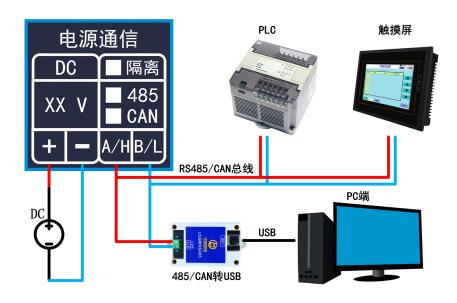


图 1.1 电源与通讯接线示意图

1.4.3 RS485 总线接线

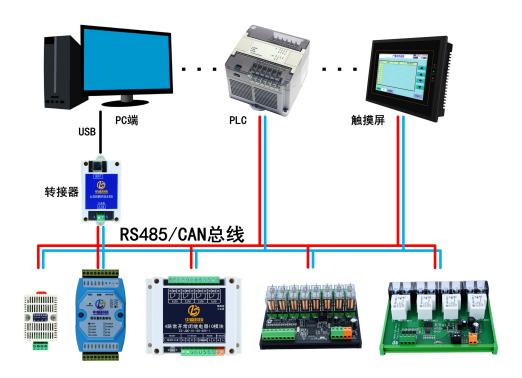


图 1.2 RS485 总线接线示意图

1.4.4 交流通断检测接线

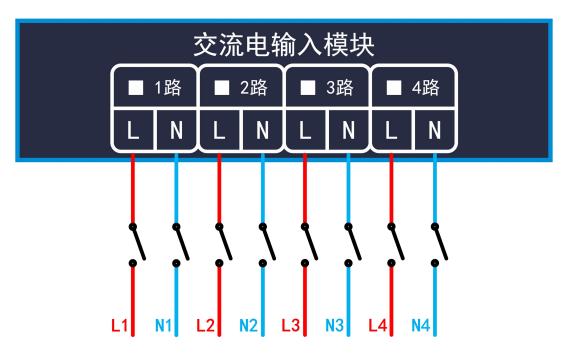


图 1.3 交流通断检测接线示意图

2 通讯协议

产品采用标准 Modbus RTU 协议,支持 0x02、0x03、0x04、0x06 和 0x10 功能码。默认通讯参数如下:

- 地址: 1
- 波特率: 9600
- 数据位:8
- 停止位: 1
- 奇偶校验:无

2.1 寄存器类型

使用 Modbus RTU 中的输入寄存器和离散输入状态寄存器保存输入口的状态。

使用 Modbus RTU 中的保持寄存器和线圈寄存器控制输出口的开关,寄存器内容掉电不保存;

使用 Modbus RTU 中的保持寄存器设置模块参数,寄存器掉内容电保存。

2.2 离散输入状态寄存器功能定义

离散输入状态寄存器为只读寄存器,用于保存输入口的状态。寄存器值为1时,表示输入已触发;寄存器值为0时,表示输入未触发。离散输入状态寄存器功能定义如表2.1所示。

表 2.1 离散输入状态寄存器功能定义

	离散输入状态寄存器功能定义					
协议地址	PLC 地址	功能描述				
		通道1输入状态				
0000Н	10001	0: 未触发				
		1: 已触发				
		通道 2 输入状态				
0001H	10002	0: 未触发				
		1: 已触发				
		通道3输入状态				
0002H	10003	功能描述 通道 1 输入状态 0: 未触发 通道 2 输入状态 0: 未触发 1: 已触发 通道 3 输入状态 0: 未触发 元 未触发				
		1: 已触发				

0003Н	10004	通道 4 输入状态 0: 未触发 1: 已触发
0004Н	10005	通道 5 输入状态 0: 未触发 1: 己触发
0005H	10006	通道 6 输入状态 0: 未触发 1: 己触发

2.3 输入寄存器功能定义

输入寄存器为只读寄存器,用于保存输入口的状态。寄存器值为1时,表示输入已触发; 寄存器值为0时,表示输入未触发。输入寄存器功能定义如表2.2所示。

表 2.2 输入寄存器功能定义

	输入寄存器功能定义						
协议地址	PLC 地址	功能描述					
		通道1输入状态					
		0: 未触发					
		1: 已触发					
0000Н	30001	示例(十六进制格式发送):					
		读通道 1 状态 : 01 04 00 00 00 01 31 CA					
		未触发时返回: 01 04 02 00 00 B9 30					
		己触发时返回: 01 04 02 00 01 78 F0					
		通道2输入状态					
0001H	30002	0: 未触发					
		1: 己触发					
		通道3输入状态					
0002H	30003	0: 未触发					
		1: 己触发					
		通道4输入状态					
0003H	30004	0: 未触发					
		1: 已触发					
		通道 N 输入状态					
		0: 未触发					
		1: 已触发					
0031H	30050	保留					
		按位表示通道 1~16 输入口状态					
0032H	30051	最低位表示通道1输入口状态,最高位表示通道16输入口状					
		态					
003211	30031						

ZHONGSHENGKEJI			人加达时间的7月人1117月	(105 105 ////
	0:	未触发		
	1:	己触发		

2.4 保持寄存器功能定义

使用 Modbus RTU 中的保持寄存器设置模块的参数、输出控制模式及控制输出的开启和 关闭。保持寄存器作为可读可写寄存器,每个寄存器中的数值均为 16 位无符号整数。

保持寄存器功能定义如表 2.3 所示。

表 2.3 保持寄存器功能定义

			*村司什番切肥定义
EL SAND EL			寄存器功能定义
协议地址	PLC 地址	复位值	功能描述
			输入口状态主动上传控制
			0: 不主动上传(出厂默认);
			1: 任一输入口状态发生变化时主动上传;
		>1: 主动上传间隔时间: (N-1) × 0.01, 单位:	
0031H	40050	0	秒;
003111	40030	U	主动上传的数据帧格式同读输入寄存器的响应数
			据帧格式,上传寄存器 0032H~0034H 的值,按位
			保存输入口状态,解析方法见输入寄存器定义相
			关章节。
			注: 此参数掉电保存, 修改后重新上电即可生效
0032H	40051	1	RS485 总线地址/站号(1~255)。出厂默认: 1
0032H	40031		注:此参数掉电保存,修改后重新上电即可生效
			波特率设置。
			0: 4800
			1: 9600 (出厂默认)
		1	2: 14400
0033H	40052		3: 19200
003311	40032		4: 38400
			5: 56000
			6: 57600
			7: 115200
			注:此参数掉电保存,修改后重新上电即可生效
			奇偶校验设置。
			0: 无校验(出厂默认)
003DH	40062	0	1: 奇校验
			2: 偶校验
			注: 此参数掉电保存,修改后重新上电即可生效

2.5 指令示例

修改站号为2指令(06功能码):

从站地址	功能码	寄存器址值		寄存器值		CRC 校验码	
01	06	00	32	00	02	A9	C4

修改波特率为9600指令(06功能码):

从站地址	功能码	寄存器址值		寄存器值		CRC 校验码	
01	06	00	33	00	01	В8	05

读取第一通道数据(04功能码)发送:

从站地址	功能码	寄存器起始址值		寄存器个数		CRC 校验码	
01	04	00	00	00	01	31	CA

响应:

从站地址	功能码	字节数	数据		CRC 校验码	
01	04	02	00	01	78	F0

返回数据为0001时输入为触发状态,返回数据为0000时输入为未触发状态。

3 资料下载

3.1 Modbus RTU 协议手册下载

图 3.1 点击上方图标下载《Modbus RTU 协议手册》

3.2 中盛综合测试系统下载

图 3.2 点击上方图标下载中盛综合测试系统

4 公司信息

中盛科技(东莞)有限公司是一家专注于研发、生产及销售工业自动化产品和提供自动 化解决方案的高新技术企业。中盛科技掌握行业领先的"检测与控制"技术,利用我们多年 的经验,以及对自动化现场的深刻理解,不断满足客户对产品多样化和高品质的追求。

公司技术和研发实力雄厚,硬件电路设计、软件开发及通讯技术专家和研发人员占比 40%以上,拥有 20 多项专利、10 多项软件著作权、30 多项 CE 认证证书、以及 20 多个产品 系列,通过了 IS09001 国际质量认证体系。目前主要的产品涵盖数据采集、工业控制、物联 网云平台软件系统等领域,广泛应用于电力系统、智能交通、工业自动化、物联网、矿产能 源、安防系统和智能家居等领域。

中盛科技以卓越的产品与优质的服务赢得了众多知名单位的信赖,全球超过 30000 家合作伙伴,目前累计超过 1000 万个产品长期稳定运行于工业现场,积累了大量成功经验,是国内领先的工业自动化产品与解决方案提供商。

公司联系信息如下:

- 名 称:中盛科技(东莞)有限公司
- 地 址:广东省东莞市东城街道光明社区光明新村路2号万航科技园1栋2楼
- 电 话: 0769-22331829
- 技术支持: 157 1834 2019
- 业务洽谈: 180 3827 7006
- 投诉电话: 138 2574 1827
- 邮 箱: zskjdg@foxmail.com
- 网 址: www.zskjdg.com
- 淘 宝: https://shop205432927.taobao.com
- 天 猫: https://zhongshengkeji.tmall.com
- 阿 里: https://shop57528a8a66139.1688.com
- 京 东: https://mall.jd.com/index-14244294.html

技术支持 中盛微信 公众号 资料下载 抖音

5产品系列简介

中盛科技(东莞)有限公司是一家综合设计、研发、生产和销售的企业,提供多系列先进产品满足广泛应用需求,包括数字量、模拟量、温湿度采集、交流电采集、脉冲、控制模块、数码管显示屏和转换器接口。我们专注于高质量、可靠的解决方案,同时提供电脑端测试软件和中盛云平台,构建完整的集成控制系统,实现对数据的实时监测、分析和管理。欢迎联系上方业务微信,期待为您提供定制解决方案,感谢您对中盛科技产品的关注。

中盛科技(东莞)有限公司已在天猫、淘宝、阿里巴巴等多家知名电商平台设立多个官方店铺,展售公司研发的高品质产品。覆盖数字量、模拟量、温湿度采集、交流电采集、脉冲、控制模块、数码管显示屏和转换器接口等多个系列。扫描下方二维码即可进入我们的店铺,深入了解每个系列的产品特色。我们致力于为客户提供便捷购物体验,期待您的光临,感谢您对中盛科技产品的关注与支持。

天猫店铺

企业淘宝

阿里巴巴

淘宝授权

谢谢!