UPS 通讯协议----MODBUS

一、简介

本通信协议详细描述了 PWi31\PWi33 系列 UPS 不间断电源在 MODBUS 通讯模式下如何进行信息交换和数据传送,以便客户进行在线监测 UPS 工作状态。

1.1 通讯协议的目的

通信协议的作用使信息和数据在上位机主站和子站之间有效的传递,它包括:

- (1) 主站访问所有子站的状态数据;
- (2) 主站访问子站的所有测量数据。

二、MODBUS 串行通信协议详细说明

2.1 MODBUS 协议串行通信基本规则

MODBUS 协议广泛应用于 RS-485 通信网中, 一个 RS-485 通信网可支持多个子站:

- 1) 所有通信应遵照主/从机方式。在这种方式下,信息和数据在单个 MODBUS 主站和最多 32 个子站 监控设备之间传递;
- 2) 主站将初始化和控制所有在 RS-485 通信回路上传递的信息:
- 3) 子站不能发起通信;
- 4) 所有信息以"数据包"形式进行传递,数据包由一串字节组成(每个字节8位)。一个数据包中最多可含255个字节;
- 5) 主站发送数据包称为请求, 子站发送数据包称为响应;
- 6)任何时候只能有一个子站响应主站一个请求。

2.2 传送模式

MODBUS 协议包括 ASCII 和 RTU 两种模式。本协议采用 MODBUS-RTU 模式,数据位 8 位;校验码三种可选:无,奇,偶(默认为:奇校验);停止位:当无校验码时,必须是 2 位停止位,当奇或偶校验码时,必须是 1 位停止位。

2.3 MODBUS 数据包结构描述

MODBUS 数据包由以下几个部分组成:

- 1) 地址域
- 2) 功能码域
- 3)数据域
- 4)校验域

2.3.1 地址域

MODBUS 的子站地址域长度为一个字节,有效的子站地址范围从 1²47 (默认为 1)。子站如果接收到数据包中的地址与自身地址相符合,应当执行数据包中所包含的命令。子站所响应的数据包中包含同样的地址域。

2.3.2 功能码域

模式,即最高位字节在前,低位字节在后。举例如下:

例如:某16位寄存器的数值为0X15AC,则数值发送顺序为

高位字节=0X15

低位字节=OXAC

2.3.4 校验码

MODBUS-RTU 模式采用 16 位 CRC 校验码,发生器多项式为(X16+X15+X2+1)。发送设备应当对数据包中的每一个数据都进行 CRC16 计算,最后结果存放入检验域中。接收设备也应当对数据包中的每一个数据(除校验码外)进行 CRC16 计算,将结果与校验域进行比较。只有相同的数据包才可以被接受。

三、MODBUS RTU MODE 简介

3.1 基本命令结构 (均为 16 进制 Hexadecimal)

START OF	ADDRESS	FUNCTION	DATA	ERROR	END OF FRAME
FRAME	FIELD	CODE	FIELD	CHECK	

- (1) START OF FRAME: 至少有 4 个字符的时间没有传送数据。
- (2) ADDRESS FILED: 欲读取或控制 Transducer 的地址(地址范围为 1~255), Address 0 为广播方式,只对 Function Code: 06H 有效。
- (3) FUNCTION CODE:
 - a. 03H: 读取 Transducer 的数据,目前只接受读取指令。
 - b. 06H: 将资料写入 Transducer 。
- (4) DATA FIELD:包括缓存器地址及欲读取之Word数。
- (5) ERROR CHECK: 16bit CRC.
- (6) END OF FRAME: 至少有 4 个字符的时间没有传送数据。
- 1. Bit Per Byte

通讯采用 N、8、2 格式:

Start Bit	Data Bit	Parity	Stop
1	8	None	2

3.2 CRC 计算方式

CRC 计算方式有两种,一种为逻辑运算,另一种为查表方式,目前采用查表方式。CRC 字段为 2 个 16 进制 Byte,从 ADDRESS FIELD 计算至 DATA FIELD 结束,若 PC 计算之 CRC 与接收的不符,则表示数据错误。

- 1. 逻辑运算计算步骤如下:
- (1) 将一个 16 位缓存器填入 FFFF (Hex), 我们定义为 CRC 缓存器。
- (2) 将 CRC 缓存器的低 8 位与 Message 的第一个 Byte 做互斥或 (Exclusive OR), 结果放入 CRC 缓存器。
- (3) 将 CRC 缓存器向右移一个位, CRC 缓存器最高位填入 0, 比较移出的位(定义为 SLSB)。
- (4) 若 SLSB=0, 重复步骤 3。若 SLSB=1,将 CRC 缓存器与常数 A001 (Hex)做互斥或,结果放入 CRC 缓存器。
- (5) 重复步骤 3 及步骤 4, 直到 8 位都做完。
- (6) 重复步骤 2~5, 直到所有 Byte 都做完。
- (7) 计算出来 CRC 的值需高低位互换填入 Message 中。

Addr	Func	Data	Data	Data	Data	Data	CRC	CRC
		Count					Lo	Hi

3.3 读取 Transducer 缓存器 (Function Code=03 Hex)

Query:

Start of	Address	Function	Start	Number of	Error	End of
Frame	Field	Code	Address	Register	Check	Frame

Start of frame: Starting message marker

Address Field: 欲读取 Transducer 之地址<01~FF Hex>(1 Byte)

Function Code: 03 Hex (1 Byte)

Start Address: 第一个缓存器之地址(2 Byte)

Number of Registers: 欲读取多少个 Word。

Error Check: CRC

End of Frame: End message marker

Response:

Start of	Address	Function	Number of	DO, D1	Error	End of
Frame	Field	Code	Data Byte	Dn	Check	Frame
			Count			

Start of frame: Starting message marker

Address Field: 回传 Transducer 之地址(1 Byte)

Function Code: 03 Hex (1 Byte)

Number of data byte count: 00~?? Hex (1 byte); 即 D0~Dn 的 Byte 数。

Do~Dn: Data

Error Check: CRC

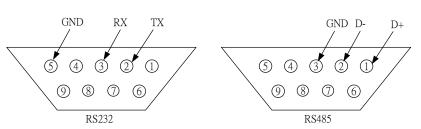
End of Frame: End message marker

四、通讯端口说明:

显示板上通讯端口有 4 个, 传输速率为 2400 BIT/S, 端口引到 UPS 前板。

J2: RS232 串口, 使用 UPSMON 通讯协议。

J3: RS485 串口, 使用 UPSMON 通讯协议和 MODBUS 协议。


J4: SNMP LAN CARD, 使用 UPSMON 通讯协议。

J5: RS485 串口, 使用 UPSMON 通讯协议。

注意: (1)端口 J2, J4 及 J5 一次只能使用其中一个进行通讯, J3 为独立端口。

(2) J3 的协议选择,是通过显示板背面的短路跳片 JP2 进行选择。 选择 1、2 为 UPSMON 协议;选择 2、3 为 MODBUS 协议。并按面板后面的 SW10,进行 DSP 重启

通讯端口 PIN 定义:

五、通讯端口协议设定

采用 RS485,波特率为设置为 2400,数据位 8 位,停止位 2 位,握手协议无,校验方式无。

1. 遥测量:

1.1 讀取輸出 U 相資料(适用于 31 和 33 机器)

		通讯地址	功能码	起始地	起始地	数据长	数据长	校验码	校验码
				址高位	址低位	度高位	度低位	高位	低位
命令:	单机	01	03H	00H	00H	00H	12H	C5H	С7Н
	并机主机	02	03H	00H	00H	00H	12H	C5H	F4H
	并机从机	03	03H	00H	00H	00H	12H	C4H	25H
返回		通讯地址	功能码	数据	长度	数	数据		校验码
								高位	低位
		01\02\03	03H	24	H			XXH	XXH

1.2 讀取輸出 V 相資料(适用于 33 机器)

		通讯地址	功能码	起始地	起始地	数据长	数据长	校验码	校验码
				址高位	址低位	度高位	度低位	高位	低位
命令:	单机	01	03H	00H	24H	00H	12H	85H	CCH
	并机主机	02	03H	00H	24H	00H	12H	85H	CC H
	并机从机	03	03H	00H	24H	00H	12H	84H	24H
返回		通讯地址	功能码	数据	长度	数	数据		校验码
								高位	低位
		01\02\03	03H	24	Н			XXH	XXH

1.3 讀取輸出 W 相資料(适用于 33 机器)

		通讯地址	功能码	起始地	起始地	数据长	数据长	校验码	校验码
				址高位	址低位	度高位	度低位	高位	低位
命令:	单机	01	03H	00H	48H	00H	12H	45H	D1H
	并机主机	02	03H	00H	48H	00H	12H	45H	E2H
	并机从机	03	03H	00H	48H	00H	12H	44H	33H
返回		通讯地址	功能码	数据	长度	数	数据		校验码
								高位	低位
		01\02\03	03H	24	Η			XXH	XXH

数据定义:

寄存器地址	描述	Type	Format	Unit
0000 H	输出U相电压(mV)	Byte	Hi-Lo	0.001V
0001 H		Byte	Hi-Lo	
0002 H		Byte	Hi-Lo	
0003 H		Byte	Hi-Lo	
0004 H	输出 U 相电流(mA)	Byte	Hi-Lo	0.001A
0005 H		Byte	Hi-Lo	
0006 H		Byte	Hi-Lo	
0007 H		Byte	Hi-Lo	
0008 H	输出 U 相视在功率(mVA)	Byte	Hi-Lo	0.001VA
0009 H		Byte	Hi-Lo	
000A H		Byte	Hi-Lo	
000B H		Byte	Hi-Lo	
000C H	输出 U 相实功率(mW)	Byte	Hi-Lo	0.001W
000D H		Byte	Hi-Lo	
000E H		Byte	Hi-Lo	
000F H		Byte	Hi-Lo	

				1
0010 H	輸出∪相虚功率(mVar)	Byte	Hi-Lo	0.001Var
0011 H		Byte	Hi-Lo	
0012 H		Byte	Hi-Lo	
0013 H		Byte	Hi-Lo	
0014 H	输出 U 相功因(%)	Byte	Hi-Lo	0.001
0015 H		Byte	Hi-Lo	
0016 H		Byte	Hi-Lo	
0017 H		Byte	Hi-Lo	
0018 H	输出U相频率(mHz)	Byte	Hi-Lo	$0.001 \mathrm{Hz}$
0019 H		Byte	Hi-Lo	
001A H		Byte	Hi-Lo	
001B H		Byte	Hi-Lo	
001C H	输出 U 相实功能量(WH)	Byte	Hi-Lo	0.001WH
001D H		Byte	Hi-Lo	
001E H		Byte	Hi-Lo	
001F H		Byte	Hi-Lo	
0020 H	输出 U 相虚功能量(VARH)	Byte	Hi-Lo	0.001WarH
0021 H		Byte	Hi-Lo	
0022 H		Byte	Hi-Lo	
0023 H		Byte	Hi-Lo	
0024 H	输出 V 相电压(mV)	Byte	Hi-Lo	0.001V
0025 H		Byte	Hi-Lo	
0026 H		Byte	Hi-Lo	
0027 H		Byte	Hi-Lo	
0028 H	输出 V 相电流(mA)	Byte	Hi-Lo	0.001A
0029 H		Byte	Hi-Lo	
002A H		Byte	Hi-Lo	
002B H		Byte	Hi-Lo	
002C H	输出 V 相视在功率(mVA)	Byte	Hi-Lo	0.001VA
002D H		Byte	Hi-Lo	
002E H		Byte	Hi-Lo	
002F H		Byte	Hi-Lo	
0030 H	输出 V 相实功率(mW)	Byte	Hi-Lo	0.001W
0031 H		Byte	Hi-Lo	
0032 H		Byte	Hi-Lo	
0033 H		Byte	Hi-Lo	
0034 H	输出 V 相虚功率(mVAR)	Byte	Hi-Lo	0.001Var
0035 H		Byte	Hi-Lo	
0036 H		Byte	Hi-Lo	
0037 H		Byte	Hi-Lo	
0038 H	输出 V 相功因(%)	Byte	Hi-Lo	0.001
0039 H		Byte	Hi-Lo	
003A H		Byte	Hi-Lo	
003B H		Byte	Hi-Lo	
003C H	输出V相频率(mHz)	Byte	Hi-Lo	$0.001 \mathrm{Hz}$
003D H		Byte	Hi-Lo	
003E H		Byte	Hi-Lo	
003F H		Byte	Hi-Lo	
0040 H	输出 V 相实功能量(WH)	Byte	Hi-Lo	0.001WH
0041 H		Byte	Hi-Lo	
0042 H		Byte	Hi-Lo]
0043 H		Byte	Hi-Lo	
0044 H	输出 V 相虚功能量(VARH)	Byte	Hi-Lo	0.001WarH
0045 H		Byte	Hi-Lo	
0046 H		Byte	Hi-Lo	

	T			1
0047 H		Byte	Hi-Lo	
0048 H	输出W相电压(mV)	Byte	Hi-Lo	0.001V
0049 H		Byte	Hi-Lo	
004A H		Byte	Hi-Lo	
004B H		Byte	Hi-Lo	
004C H	输出 W 相电流(mA)	Byte	Hi-Lo	0.001A
004D H		Byte	Hi-Lo	
004E H		Byte	Hi-Lo	
004F H		Byte	Hi-Lo	
0050 H	输出W相视在功率(mVA)	Byte	Hi-Lo	0.001VA
0051 H		Byte	Hi-Lo	
0052 H		Byte	Hi-Lo	
0053 H		Byte	Hi-Lo	
0054 H	输出 W 相实功率(mW)	Byte	Hi-Lo	0.001W
0055 H		Byte	Hi-Lo	
0056 H		Byte	Hi-Lo	
0057 H		Byte	Hi-Lo	
0058 H	输出W相虚功率(mVAR)	Byte	Hi-Lo	0.001Var
0059 H		Byte	Hi-Lo	
005A H		Byte	Hi-Lo	
005B H		Byte	Hi-Lo	
005C H	输出 W 相功因(%)	Byte	Hi-Lo	0.001
005D H		Byte	Hi-Lo	
005E H		Byte	Hi-Lo	
005F H		Byte	Hi-Lo	
0060 H	输出W相频率(mHz)	Byte	Hi-Lo	$0.001 \mathrm{Hz}$
0061 H		Byte	Hi-Lo	
0062 H		Byte	Hi-Lo	
0063 H		Byte	Hi-Lo	
0064 H	输出 W 相实功能量(WH)	Byte	Hi-Lo	0.001WH
0065 H		Byte	Hi-Lo	
0066 H		Byte	Hi-Lo	
0067 H		Byte	Hi-Lo	
0068 H	输出 W 相虚功能量(VARH)	Byte	Hi-Lo	0.001WarH
0069 H		Byte	Hi-Lo	
006A H		Byte	Hi-Lo	
006B H		Byte	Hi-Lo	

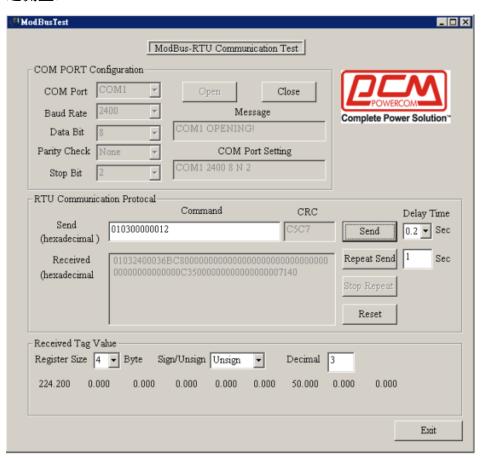
2.遥信量(适用于 31 和 33 机器)

		通讯地址	功能码	起始地	起始地	数据长	数据长	校验码	校验码
				址高位	址低位	度高位	度低位	高位	低位
命令	单机	01	03H	00H	98H	00H	04H	C5H	Е6Н
	并机主机	02	03H	00H	98H	00H	04H	C5H	D5H
	并机从机	03	03H	00H	98H	00H	04H	C4H	04H
返回		通讯地址	功能码	长	度	数	 据	CRC Hi	CRC Lo
		01\02\03	03H	08	Н			XXH	XXH

信号定义(0 为状态未动作/条件未成立,1 为状态动作/条件成立):

寄存器地址	位	描述	备注		
0098H	BITO:	BATTERY TEST (电池测试)	Status 0 or Status 1 No used		
~	BIT1:	EMERGENCY STOP (紧急停止)	Tro useu		
0099H	BIT2:	70% LOAD (70% 额定输出)	No used		
(指示灯 1)	BIT3:	100% LOAD (100%额定输出)			
	BIT4:				
	BIT5:	(125%额定输出 150% LOAD (150%额定输出)	No used		
	BIT6:				
	BIT7:				
	BIT8:	OVER TEMPERATURE (机内过温度)			
	BIT9:	OVERLOAD (输出过载)			
	BIT10:	HIGH VDC (直流过高压)			
	BIT11:	BATTERY LOW (电池低压)			
	BIT12:	BATTERY LOW SHUTDOWN (电池低压即将关机)			
	BIT13:	FAULT (系统故障)			
	BIT14:	保留	No used		
	BIT15:	保留 INVERTER ON	No used		
009AH	BITO:	(逆变器启动)			
~	BIT1:	INVERTER STATIC SWITCH ON (逆变器静态开关导通)			
009BH	BIT2:	OUTPUT SHORT CIRCUIT (输出短路)			
(指示灯 2)	BIT3:	INVERTER FAIL INVERTER SHUTDOWN (逆变器异常,逆变器关闭)	No used		
	BIT4:	BYPASS ON INVERTER SHUTDOWN (旁路开关动作,逆变器关闭)	No used		
	BIT5:	HIGH VDC INVERTER SHUTDOWN (直流电压过高,逆变器关闭) INVERTER OVERLOAD INVERTER SHUTDOWN	No used		
	BIT6:	No used			
	BIT7:	RESERVE VOLTAGE FAIL (备用电源电压异常) RESERVE FREQUENCY FAIL	No used		
	BIT8:	No used			
	BIT9:	BATTERY LOW (电池低压) BATTERY LOW SHUTDOWN	No used		
	BIT10:	(电池低压即将关机)	No used		

		RECTIFIER AC FAIL			
	BIT11:	(整流器输入电源异常)	No used		
	BIT12:	ROTATION ERROR (备用电源相序异常)	No used		
	BIT13:	RECTIFIER SHUTDOWN (整流器关闭)	No used		
	BIT14:	RECTIFIER HIGH VDC (整流器直流电压过高)	No used		
	BIT15:	BOOST CHARGE (均充)	No used		
	T				
009CH	BITO:	SPS Error (电源供应器故障)			
~	BIT1:	INV STS ON (逆变器静态开关导通)	No used		
009DH	BIT2:	RCM OTP (整流器过温度保护)			
(RELAY1 状态)	BIT3:	BYP Freq Error (旁路电源频率错误)	No used		
	BIT4:	BAT Boost Charge (电池充电中)	No used		
	BIT5:	PLL Error (锁相故障)	No used		
	BIT6:	Machine HD Over (机内湿度过高)	No used		
	BIT7:	OVL/ INV SD /BYP Mode (过载,逆变器关闭,系统在旁路模式)	No used		
	BIT8:	BAT Opposite (电池反接)			
	BIT9:	INV OVT (逆变器过温度保护)			
	BIT10:	EPO Action (紧急开关动作)	No used		
	BIT11:	BAT LOW Voltage (电池低电压)	No used		
	BIT12:	DC HV/ INV SD (直流侧过高压,逆变器关闭)	No used		
	BIT13:	保留	No used		
	BIT14:	INV Vce Sat (逆变器 IGBT 保护动作)			
	BIT15:	INV STS Fail (逆变器静态开关故障)			
009EH	BITO:	NORMAL MODE (正常模式)			
~	BIT1:	BACKUP MODE (电池供电模式)			
009FH	BIT2:	BYPASS MODE (旁路模式供电)			
(RELAY2 状态)	BIT3:	RECTIFIER AC FAIL (整流器输入电源异常)	No used		
	BIT4:	RESERVE VOLTAGE FAIL (备用电源电压异常)	No used		
	-				


	BIT5:	BATTERY FAIL (电池异常)	
	BIT6:	UPS OVERLOAD (UPS 过载)	No used
	BIT7:	SYN AC FAIL (同步信号错误)	No used
	BIT8:	RECTIFIER SHUTDOWN (整流器关闭)	No used
	BIT9:	FAN FAULT (风扇故障)	
	BIT10:	MAMUAL BYPASS ON (维修旁路模式)	
	BIT11:	UPS ALARM (UPS 故障警告)	No used
	BIT12:	BYPASS STS FAULT (旁路静态开关故障)	
	BIT13:	OVER TEMPERATURE (机内过温度)	No used
	BIT14:	COMPOSITE FAULT (综合故障)	No used
	BIT15:	保留	No used

六、通讯测试

现场后台通讯设备并非开机调试时就能接好,因此我们需要利用电脑进行测试通讯是否正常,以下是利用 ModbusTest 测试的测试方法。

- 1、首先确认待测 UPS RS485 通讯接口(J3)有连接,并将显示板后面 JP2 跳片跳至 2、3 脚位置,然后按一下面板后面的 SW10 键(DSP reset)
- 2、将 RS485 通讯线经由转接器与计算机連接,开启Modbus 通讯测试软件(Modbus Test)按照以下设置设定。在 Command 区域填写发送的命令,按照设备地址、功能码、起始数据高位,起始数据地位,数据长度高位,数据长度低位的顺序填写,校验码由软件自动生成在 CRC 校验码,因此在填写命令时,校验码不需输入。然后点击 Send。

遥测量:

名词翻译:

COM PORT Configuration:通讯端口设置

COM Port:选择连接电脑的串口。 Baud Rate:波特率(通讯传输速率)

Data Bit : 数据位

Parity Check: 校验方式

Stop Bit: 停止位。

Message: 通讯端口连接状态信息 COM Port Setting: 串口设置信息

RTU Communication Protocal:

Send (hexadecimal): 发送(十六进制)

Command:

CRC:校验码

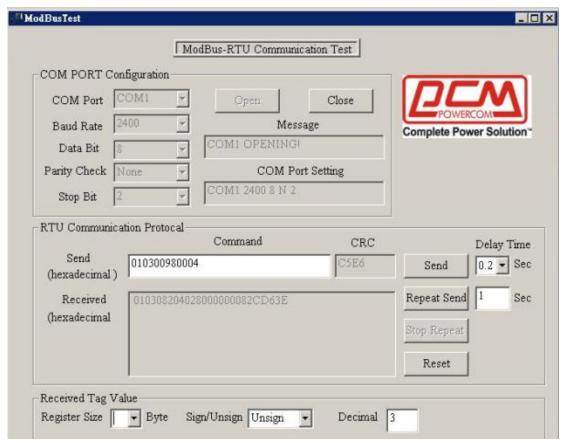
Delay Time: 延时

Received(hexadecimal):接收(十六进制)

Repeat Send: 重复发送 Stop Repeat: 停止重复

Reset:重置

Received Tag Value:收到数据的转化值


Register Size: 寄存器数据长度

Sign/Unsign:负数/正数

Decimal:小数位

通过对照遥信数据定义:输出U相电压: 224.2V,输出频率50Hz,其他数据量为0。

遥信量:

在 Command 输入命令,返回的命令为

地址码	功能码	数据长度(H)	数据						校验码		
			指示灯 1		指示灯 2 RELAY1 状态		/1 状态	S RELAY2 状态			
01	03	08	20	40	80	00	00	00	08	2C	D63E

返回的数据为十六进制,需要把它展开为二进制,查询相应对照位元状态表。

指示灯 1: 十六进制的 2040 展开为二进制为 $0010\,0000\,0100\,0000$,当展开的数位不足 16 位时,需要再二进制数位前端添加 0 补足 16 位,如展开数据的前面两个红色的 0。

对照点表中指示灯1我们可知道:

BIT6: RECTIFIER AC FAIL(整流器输入电源异常)。

BIT13: FAULT (系统故障)的数据为 1,代表这两个信号现在动作报故障。

指示灯 2: 十六进制 8000 展开为二进制为 1000 0000 0000 0000。

BIT15: BOOST CHARGE (均充),表示 UPS 处于均充状态。

RELAY1:数据都为0,代表这项状态没有动作。

RELAY2: 十六进制 082C 展开为二进制为 0000 1000 0010 1100。

代表以下信号故障:

BIT2: BYPASS MODE (旁路模式供电)。

BIT3: RECTIFIER AC FAIL(整流器输入电源异常)。

BIT5: BATTERY FAIL(电池异常)。

BIT11: UPS ALARM(UPS 故障警告)。

3、需比对测试软件(Modbus Test)中显示资料是否与待测显示面板 0L-3304 中显示资料是否相同,来判断通讯是否正常。