BMS 通信协议

适	用	接	\Box :	RS232/RS485
适	用	版	型:	
协	议	版	本:	
修	订	日	期:	

一、通信协议

2.1 通信信息帧结构见表 A1

表 A1 通信信息帧结构表

序号	1	2	3	4	5	6	7	8	9
字节数	1	1	1	1	1	2	LENID/2	2	1
(HEX)									
数据	7EH	N	00Н	46H					ODH
格式	SOI	VER	ADR	CID1	CID2	LENGTH	INFO	CHKSUM	EOI

2.2 通信信息帧的详细说明

表 A2 基本格式

序	符号	表示意义	备注
号			
1	SOI	起始位标志	ASCII 码 7EH(固定)
2	VER	协议版本号	
3	ADR	设备地址	HEX 码 OOH (固定)
4	CID1	设备标识码	HEX 码 46H (固定)
5	CID2	命令信息:控制标识码	
		响应信息:返回码	
6	LENGTH	INFO 字节长度(包括 LENID 和 LCHKSUM)	
7	INFO	命令信息:控制数据信息	
		(COMMAND_INFO)	
		应答信息: 应答数据信息(DATA_INFO)	
8	CHKSUM	校验和码	
9	EOI	结束码	ASCII 码 ODH(固定)

VER—见具体协议版本解析

ADR—00H

关于 INFO (包括 COMMAND_INFO 和 DATA_INFO) 的解释如下:

a) COMMAND_INFO 包括以下几种形式:

COMMAND_INFO 包含在命令信息中,其内容见表 A3 中的某一种或几种的组合。

表 A3 COMMAND_INFO 的形式

COMMAND_GROUP	1字节	表示同一类型设备的不同组号
COMMAND_TYPE	1字节	表示不同的遥控命令或历史数据传输中的不同控制命
		♦
COMMAND_ID	1字节	表示同一类型设备相同组内的不同监控点
COMMAND_TIME	7字节	表示时间段,详细信息见表 9
COMMAND_DATAI		含有整型数的命令信息

b) DATA_INFO 包括以下几种形式:

DATA INFO包含在响应信息中,其内容见表 A4中的一种或几种的组合。

表 A4 DATA_INFO 的形式

DATAI	定点数应答信息
DATAF	浮点数应答信息 (本协议不采用浮点数)
DATA_FLAG	数据标识信息
RUN_STATE	设备运行状态
WARN_STATE	设备告警状态
DATA_TIME	事件发生时间,详细信息见表 A9

2.3 数据格式

基本数据格式

信息帧的各个字节书写时都是以十六进制表示,两位数组成。传输时,除 SOI和 EOI(SOI=7EH, EOI=0DH)按一个字节传输外,其余各项每个字节都拆成两个字节,每个字节用两个 ASCII 码表示,即高 4 位用一个 ASCII 码表示,低 4 位用一个 ASCII 码表示,传输时先发高 4 位的 ASCII 码,后发低 4 位的 ASCII 码。示例:CID2=4BH,4 的 ASCII 码是 34H,B 的 ASCII 码是 42H,传送时顺序发送 34H 和 42H 两个字节。

2.4 LENGTH 数据格式见表 A7

表 A7 LENGTH 的数据格式

高字节								1	低字节						
校验码 LCHKSUM 长度标识码 LENID (表示					INFO	的传送	中 ASC	Ⅱ 码字	节数)						
D15	D14	D13	D12	2 D11 D10 D9 D8					D6	D5	D4	D3	D2	D1	D0

LENGTH 共 2 个字节,由 LENID 和 LCHKSUM 组成,LENID 表示 INFO 项的 ASCII 码字节数,当 LENID=0 时,INFO 为空,即无该项。LENGTH 拆分 4 个 ASCII 码传送,先高 字节,后低字节。

校验码的计算: D11D10D9D8+D7D6D5D4+D3D2D1D0, 求和后求模 16 余数取反加 1. 示例:

INFO 项的 ASCII 码的字节数为 18, 即 LENID=00000010010B。

D11D10D9D8+D7D6D5D4+D3D2D1D0=0000B+0001B+0010B=0011B, 求和后模 16 余数 为 0011B, 0011B 取反加 1 就是 1101B, 即 LCHKSUM 为 1101B。

可以得出: LENGTH 为 1101000000010010B, 即 D012H。

LCHKSUM 计算的 C 代码例程如下:

void Count Lchksum(uint linfo length, uchar *lchksum result)

```
//uint linfo_length :数据长度
//uchar *lchksum_result:数
据长度校验计算结果转存指针
{
uint lchksum_temp;
//LCHKSUM 计算暂存器
//LCHKSUM 模
lchksum_temp =
(linfo_length&0x000F)+((linfo_length>>4)&0x000F)+((linfo_length>>8)&0x000F);
lchksum_temp% =16; //模除 16 取余
lchksum_temp = ~lchksum_temp+1; //取反加 1 求补码
*lchksum_result=(unsigned char)(lchksum_temp&0x000F); //转换成字节数
}
```

2.5 CHKSUM 数据格式

CHKSUM 的计算是除 SOI、EOI 和 CHKSUM 外,其它字符按 ASCII 码累加求和,所得结果余上 65536 余数取反加 1. CHKSUM 拆分成 4 个 ASCII 码传送,先高字节,后低字节。示例:

收到的和发出的字符序列是: "~20014043E00200FD3BCR"("~"为 S0I, "CR"为 E0I),则最后的 6 个字符"FD3BCR"中的 FD3B 是 CHKSUM, 计算方法是:

```
'2' + '0' + '0' + ···+ 'E' + ···+ '0' = 32H + 30H + 30H + ···+ 45H + ···+ 30H = 02C5H
```

其中字符 '2' 的 ASCII 码是 32H, 字符 'E' 的 ASCII 码是 45H. 02C5H 模上 65536 的余数是 02C5H, 02C5H 取反加 1 就是 FD3BH

CHKSUM 计算的 C 代码例程如下:

```
Void Count_Chksum(uchar *buffer_ptr, uint info_length, uint *chksum_result)

//uchar *buffer_ptr :指向要计算校验和的数据 BUFFER 指针

//uint info_length :要计算校验和的数据 INFO 长度

//uint *chksum_result:
数据帧校验计算结果转存

指针
{

   unsigned long chksum_temp; //CHKSUM 计算暂存器
   uint chksum_cnt; //CHKSUM 累加计数器
   chksum_temp=0; //求 CHKSUM 模
   for(chksum_cnt=1;chksum_cnt<=info_length+12;chksum_cnt++)
   chksum_temp+=buffer_ptr[chksum_cnt];
   chksum_temp%=65536; //模除 65536 取余
```

```
chksum_temp = ~chksum_temp+1; //取反加 1 求补码
*chksum_result = (unsigned int)(chksum_temp&0x0000FFFF); //转换成整形数
}
```

2.6 DATA_INFO 数据格式

模拟量数据的传送形式有定点数和浮点数两种,可任选一种

a)浮点数格式

浮点数长度 32 位,4 个字节的浮点数传送顺序为先低字节后高字节,即传送顺序为:先低字节 D7~D0,接着 D15~D8,然后 D23~D15,最后高字节 D31~D24。浮点数格式见表 A8。

表 A8 浮点数格式

D31	D30~D23	D22~D0
浮点数符号位	介码	尾数

浮点数的数值=((-1)符号位 $)\times 1$. 尾数×2 (介码-127)

b) 定点数格式(INTEGER, 2字节)

有符号整型数: -32768~+32767

无符号整型数: 0~65535

传送顺序先高字节后低字节。

c)无符号字符型(CHAR, 1字节, 0--255)

2.7 日期时间 (COMMAND TIME 和 DATA TIME) 格式见表 A9

表 A9 日期时间格式

年	(1-9999)	INTEGER	整型数2字节,十六进制						
月	(1-12)	CHAR	字符型1字节,十六进制						
日	(1-31)	CHAR	字符型1字节,十六进制						
时	(023)	CHAR	字符型1字节,十六进制						
分	(0-59)	CHAR	字符型1字节,十六进制						
秒	(059)	CHAR	字符型1字节,十六进制						
注: 年按整	注:年按整数格式传送,实际值=传送值								

2.8 SmartPack

每个 SmartPack 管理多节单体电池,可以检测每节单体电池的电压, 检测电流,管理六个温度传感器。进行电压、电流、温度等的保护处理, 各种保护参数是设置在 eeprom 中。

一个组群最多可以有 8 个 SmartPack (目前最多 7 个)组成,其中一个为主机,其余的为从机。主机使用 RS232 总线同电池管理系统通信,同时其使用一 RS485 总线同其余的从机通信。电池管理系统通过同主机的通信命令,可以读取主机和所有从机的信息。

波特率为9600BPS, 无校验,1位停止位。

2.9 控制标识码的定义

序号	CID2 值(HEX)	表示意义	页码
1	42	获取遥测量信息	8
2	44	获取遥信量信息	9

2.10 返回码的定义

序号	CID2 值(HEX)	表示意义
1	00H	通信正常响应
2	01H	协议版本错误
3	02H	数和校验错误
4	03H	长度校验错误
5	04H	命令错误不支持
6	05H	数据格式错误
7	06H	设置数据无效
8	07H	寻址组号错误
9	08H	存储外设错误
10	09H	数据越界

三、通信命令

1、 遥测量信息获取及返回

遥测信息用于电池管理系统的模拟量(定点数)处理。包括若干个单节电池电压、若干个单体电芯温度、一个环境温度、一个功率温度、电池组总电压、充放电电流、电池剩余容量、电池总容量和电池循环次数的获取显示存储。

1.1 遥测信息的获取(命令信息)

获取1号机即主机的遥测命令

序号	1	2	3	4	5	6	7	8	9
字节数 (HEX)	1	1	1	1	1	2	1	2	1
数据	7EH	N	00H	46H	42H	E0H、02H	01H		0D
格式	SOI	VER	ADR	CID1	CID2	LENGTH	INFO	CHKSUM	EOI

注: LENID=02H

INFO 一个字节,为 COMMAND_GROUP:

COMMAND_GROUP=0x01 获取 PACK1 (主机) 电池数据。

COMMAND GROUP=0x02 获取 PACK2 电池数据。

• • • • • •

COMMAND_GROUP=0xff 获取所有 PACK 电池数据。

命令信息 (HEX 码): 7E 32 36 30 30 34 36 34 32 45 30 30 32 30 31 46 44 33 30 0D

命令信息 (ASCII 码): ~26004642E00201FD30

1.2 遥测命令的返回信息(响应信息)

序号	1	2	3	4	5	6	7	8	9
字节数	1	1	1	1	1	2	LENID/2	2	1
(HEX)									
数据	7EH	N	00Н	46H	00Н				ODH
格式	SOI	VER	ADR	CID1	CID2	LENGTH	INFO	CHKSUM	EOI

INFO 内容如下:

遥测量内容及返回顺序

序号	内容	字节数
1	DATA_FLAG	1
2	上位机需要获取的 PACK 组位置	1
3	电池电流数据	2
4	电池总压数据	2
5	电池剩余容量	2
6	自定义遥测量数量	1
7	电池总容量	2
8	电池设计容量	2
9	电池循环次数	2
10	SOH	2
11	保留	2
12	M(单体电池数量)	1
13	单体电池1电压	2
14	单体电池2电压	2
•••	•••	•••
M+12	单体电池 M 电压	2
M+13	N(温度数量)	1
M+14	电芯温度1数据	2

M+15	电芯温度2数据	2
•••	•••	•••
M+N+13	电芯温度 N 数据	2

2、遥信量信息获取及返回

遥信信息用于电池管理系统的告警(定点数)处理,包括若干节单体电池的电压状态、若干节单体电芯的温度状态、电池组总电压状态、充放电电流状态、电池容量状态、电压事件、电流事件、温度事件、容量事件、FET 状态、系统状态、均衡状态的获取及显示。

2.1 遥信信息的获取(命令信息)

获取1号机即主机的遥信命令

序号	1	2	3	4	5	6	7	8	9
字节数 (HEX)	1	1	1	1	1	2	1	2	1
数据	7EH	N	00H	46H	44H	E0H、02H	01H		0D
格式	SOI	VER	ADR	CID1	CID2	LENGTH	INFO	CHKSUM	EOI

注: LENID=02H

INFO 一个字节,为 COMMAND_GROUP:

COMMAND GROUP=0x01 获取 PACK1 (主机) 电池数据。

COMMAND GROUP=0x02 获取 PACK2 电池数据。

.....

COMMAND_GROUP=Oxff 获取所有 PACK 电池数据。

命令信息 (HEX 码): 7E 32 36 30 30 34 36 34 34 45 30 30 32 30 31 46 44 32 45 0D

命令信息 (ASCII 码): ~26004644E00201FD2E

2.2 遥信命令的返回信息(响应信息)

序号	1	2	3	4	5	6	7	8	9
字节数	1	1	1	1	1	2	LENID/2	2	1
(HEX)									
数据	7EH	N	00H	46H	00Н				ODH
格式	SOI	VER	ADR	CID1	CID2	LENGTH	INFO	CHKSUM	EOI

INFO 内容如下:

遥信量内容及返回顺序

序号	内容	字节数
1	DATA_FLAG	1
2	上位机需要获取的 PACK 组位置	1
3	M(单体电池数量)	1
4	单体电池1电压告警状态	1
5	单体电池2电压告警状态	1

•••	•••	•••
M+3	单体电池 M 电压告警状态	1
M+4	N(温度数量)	1
M+5	电芯温度1告警状态	1
M+6	电芯温度 2 告警状态	1
•••	•••	•••
M+N+2	电芯温度 N 告警状态	1
M+N+3	环境温度告警状态	1
M+N+4	功率温度告警状态	1
M+N+5	充电流告警状态	1
M+N+6	电池总压告警状态	1
M+N+7	放电流告警状态	1
M+N+8	保护状态1代码	1
M+N+9	保护状态 2 代码	1
M+N+10	功能控制1代码	1
M+N+11	功能控制2代码	1
M+N+12	功能控制 3 代码	1
M+N+12	指示状态代码	1
M+N+13	故障状态代码	1
M+N+14	报警状态1代码	1
M+N+15	报警状态 2 代码	1
M+N+16	均衡状态 1 代码	1
M+N+17	均衡状态 2 代码	1

遥信量数据定义

遥测量数据	0X00	0X01	0X02	OX0F
遥测量数据含义	无告警	下限告警	上限告警	其它

保护状态1代码的定义

Byte 位	含义
Bit0	单体过压
Bit1	单体过放
Bit2	总压过压
Bit3	总压过放
Bit4	充电过流
Bit5	放电过流
Bit6	短路
Bit7	充电器高压

保护状态 2 代码的定义

Byte 位	含义
Bit0	充电高温

Bit1	放电高温
Bit2	充电低温
Bit3	放电低温
Bit4	MOS 高温
Bit5	环境高温
Bit6	环境低温
Bit7	充满

功能控制 1 代码的定义

Byte 位	含义
Bit0	Buzzer 功能
Bit1	CFET 功能
Bit2	DFET 功能
Bit3	5or10
Bit4	限流屏蔽
Bit5	屏蔽告警
Bit6	保留
Bit7	测试模式

功能控制 2 代码的定义

Byte 位	含义
Bit0	单体过充
Bit1	单体过放
Bit2	总电压过充
Bit3	总电压过放
Bit4	充电过流
Bit5	放电过流
Bit6	电芯高温
Bit7	电芯低温

功能控制 3 代码的定义

Byte 位	含义
Bit0	MOS 高温
Bit1	环境温度
Bit2	保留
Bit3	保留
Bit4	保留
Bit5	保留
Bit6	保留
Bit7	保留

指示状态代码的定义

Byte 位	含义
Bit0	限流指示
Bit1	CFET 指示
Bit2	DFET 指示
Bit3	PACK 供电指示
Bit4	反接指示
Bit5	充电器接入指示
Bit6	关机
Bit7	加热膜指示

故障状态代码的定义

Byte 位	含义
Bit0	CFET 故障
Bit1	DFET 故障
Bit2	NTC 故障
Bit3	保留
Bit4	电芯故障
Bit5	采样故障
Bit6	限流故障
Bit7	加热膜故障

报警状态1代码的定义

Byte 位	含义
Bit0	单体高压
Bit1	单体低压
Bit2	总压过压
Bit3	总压低压
Bit4	充电过流
Bit5	放电过流
Bit6	保留
Bit7	保留

报警状态 2 代码的定义

Byte 位	含义
Bit0	充电高温
Bit1	放电高温

Bit2	充电低温
Bit3	放电低温
Bit4	环境高温
Bit5	环境低温
Bit6	MOS 高温
Bit7	低电量告警

均衡状态1代码定义

Byte 位	含义
Bit0	电芯 9 均衡指示(为1开启)
Bit1	电芯 10 均衡指示(为1开启)
Bit2	电芯 11 均衡指示(为1开启)
Bit3	电芯 12 均衡指示(为1开启)
Bit4	电芯 13 均衡指示(为1开启)
Bit5	电芯 14 均衡指示(为1开启)
Bit6	电芯 15 均衡指示(为1开启)
Bit7	电芯 16 均衡指示(为1开启)

均衡状态 2 代码定义

Byte 位	含义
Bit0	电芯1均衡指示(为1开启)
Bit1	电芯 2 均衡指示(为1开启)
Bit2	电芯3均衡指示(为1开启)
Bit3	电芯4均衡指示(为1开启)
Bit4	电芯5均衡指示(为1开启)
Bit5	电芯6均衡指示(为1开启)
Bit6	电芯7均衡指示(为1开启)
Bit7	电芯8均衡指示(为1开启)