在线式多合一气体浓度检测仪通讯协议

本探头使用的是基于 RS485 硬件接口 ModbusRTU 通讯协议。支持 03 和 06 两个功能码。

03 功能码: 读取单个或多个保持寄存器

主机(PLC、PC等设备)发送:

地址 03 起始地址高位		起始地	也址低位	寄存器数量高位		寄存器数量低位		CRCL	CRCH			
从机回复:												
地址	03	字节数 n*2	数排	1 高位	数据1低	位		数据n	高位	数据 n 低位	CRCL	CRCH

06 功能码:修改单个保持寄存器

主机(PLC、PC等设备)发送:

地址	地址 06 地址寄存器高位		地址寄存器低位	修改数值高位	修改数值低位	CRCL	CRCH
从机回	复						
地址	06	地址寄存器高位	地址寄存器低位	修改数值高位	修改数值低位	CRCL	CRCH

被测气体示例:

请先浏览系统参数表中的"数据发送模式"参数。

假设本机地址为1,数据发送模式为:被动-2。

读取 S02 实时浓度寄存器指令示例:

主机发送: 01 03 00 00 00 01 84 0A

从机回复: 01 03 02 00 64 B9 AF (S02 实时浓度为 100,需按小数点位数缩小,即需除以 10,实际浓度为 $100\div10=10.0$ ppm)

修改 CH4 低报寄存器指令示例:

主机发送: 04 06 00 05 **00 FA** 19 DD

从机回复: 04 06 00 05 00 FA 19 DD (把 CH4 的低报修改为 0xFA,即 250,

实际低报值为 250÷10=25.0%LEL)

部分寄存器地址表:气体参数

	名称	地址	备注
通道一	实时浓度	0x0000	03 功能码: 读取实时浓度
			06 功能码: 调零
	状态	0x0001	03 功能码:读取当前状态
			06 功能码: 标定
	量程	0x0002	限制最小 0x0064, 即最小限制 100
			01 06 00 02 03 E8 CRCL CRCH
			修改 0x0002 内容为 0x03E8, 即 1000
	单位	0x0003	0x0000-0x0012,即 0-18,共 19 个单位
			0-空,1-ppm,2-pphm,3-ppb,4-%LEL,
			5-%VOL,6-ug/m3,7-mg/m3,8-g/m3,
			9-mg/L, 10-%RH, 11-℃, 12-Nm3/h,
			13-MPa, 14-KPa, 15-Pa, 16-mm, 17-m3/h,
			18-M/S
	精度	0x0004	0x0000-0x0004;即 0-4,最多 4 位小数
	低报	0x0005	0-0xFFFF,即 0-65535
	高报	0x0006	0-0xFFFF,即 0-65535
	回差	0x0007	0-0xFFFF,即 0-65535
	气体名称第2、1字符	0x0008	单个字符范围 0x0000-0x007F
	气体名称第 4、3 字符	0x0009	单个字符范围 0x0000-0x007F
	气体名称第6、5字符	0x000A	单个字符范围 0x0000-0x007F
	气体名称第8、7字符	0x000B	单个字符范围 0x0000-0x007F
	4mA DAC 值	0x0010	限制最大 0x0F9F,即 3999
	20mA DAC 值	0x0011	限制最大 0x0F9F,即 3999
	报警模式	0x0012	取值范围: 0x0001, 0x0002, 0x0003,
			0x0004。以下情况不报警:
			模式 1: V <l<h,浓度值<低报值<高报值< th=""></l<h,浓度值<低报值<高报值<>
			模式 2: L <v<h,低报值<浓度值<高报值< th=""></v<h,低报值<浓度值<高报值<>
			模式 3: H <v<l,高报值<浓度值<低报值< th=""></v<l,高报值<浓度值<低报值<>
			模式 4: H <l<v,高报值<低报值<浓度值< th=""></l<v,高报值<低报值<浓度值<>
	传感器信号类型	0x0013	0-正信号,1-负信号
	读取浓度比例	0x001B	03 功能码:读取当前浓度与量程的比例
	或		06 功能码:
	写强制输出电流标志		0-随浓度比例输出
			4-强制输出 4mA
			20-强制输出 20mA
			其他值:报错误码 03

部分寄存器地址表:系统参数

名称		地址	备注		
系统参数	本机地址	0x0080	0x0001-0x00C7,即 1-199 号		
	与外部设备通信波特率	0x0081	0x0000-0x0008,即 0-8		
			0-2400,1-4800,2-9600,3-14400,4-19200,		
			5-38400,6-56000,7-57600,8-115200		
	数据发送模式	0x0082	0x0000, 0x0001, 0x0002 0x0000: 单地址的被动发送模式, 一台		
			检测仪仅有一个 ModbusRTU 通讯地址,显示为"被动-1",此检测仪通讯地址即为系统设置界面下的"本机地址"。气		
			体 1 寄存器地址范围: 0x0000-0x001F; 气体 2 寄存器地址范围: 0x0020-0x003F;		
			气体 3 寄存器地址范围: 0x0040-0x005F;		
			气体 4 寄存器地址范围: 0x0060-0x007F;		
			0x0001: 多地址的被动发送模式,一台		
			检测仪有多个 ModbusRTU 通讯地址,显示为"被动-2",例如检测仪系统设置界		
			面下的"本机地址"为 5,则气体 1 的通讯地址为 5,寄存器地址范围:		
			0x0000-0x001F; 气体 2 的通讯地址为 6,		
			寄存器地址范围: 0x00000-0x0001F; 气体 3 的通讯地址为 7, 寄存器地址范围:		
			0x0000-0x001F; 气体 4 的通讯地址为 8, 寄存器地址范围: 0x0000-0x001F;		
			0x0002: 单地址的主动发送模式,数据协议为 ModbusRTU 协议,一条数据包含		
			4个气体的实时浓度,不含小数点①,发		
			送间隔由"数据主动发送间隔"控制。		
			数据格式见②。		
	数据主动发送间隔	0x0083	0x0005-0xEA5F,即 5-59999 秒(约 16.666 小时)		
	恢复出厂设置对象	0x0084	0x0000-0x0005,即 0-5		
			0-气体 1, 1-气体 2, 2-气体 3, 3-气体 4, 4-系统参数, 5-全部参数		
	语言	0x0085	0x0000, 0x0001, 即 0 和 1		
	T	0,0000	0-简体中文,1-English 0x0000-0x012B,即 0-299 秒,5 分钟		
	1 11 11 12 12				
	开机倒计时 开机自检	0x0086 0x0087	0x0000-0x012B,即 0-299 秒,5 分钟 0x0000,0x0001,即 0 和 1		

版本号	0x0088	(只读)十进制 10=V1.0
主动上传开关	0x0089	0x0000, 0x0001, 即 0 和 1
		设为主动上传模式时有效
		0-停止主动上传
		1-启用主动上传(上电默认状态)
气体1实时浓度	0x00A0	只读,以整数传递,真实值需结合小数
		点位数换算,可使用"本机地址"连续
		读取③
气体2实时浓度	0x00A1	同上
气体 3 实时浓度	0x00A2	同上
气体 4 实时浓度	0x00A3	同上
气体1运行状态	0x00A4	只读, 1-正常, 2-低报, 3-高报, 4故障
气体2运行状态	0x00A5	同上
气体 3 运行状态	0x00A6	同上
气体 4 运行状态	0x00A7	同上
气体 1 高限报警值	0x00B0	只读,以整数传递,真实值需结合小数
		点位数换算
气体1低限报警值	0x00B1	同上
气体 1 报警回差值	0x00B2	同上
气体 2 高限报警值	0x00B3	同上
气体 2 低限报警值	0x00B4	同上
气体 2 报警回差值	0x00B5	同上
气体 3 高限报警值	0x00B6	同上
气体 3 低限报警值	0x00B7	同上
气体 3 报警回差值	0x00B8	同上
气体 4 高限报警值	0x00B9	同上
气体 4 低限报警值	0x00BA	同上
气体 4 报警回差值	0x00BB	同上
设为出厂参数	0x00EE	0-设为出厂值,非0-设为当前值

①、不含小数点,即数据传输时都是传输整数,例如一个气体的量程为 10.00ppm,实时浓度为 0.12, 在传输时会传输 12, 而不是 0.12, 可以理解为放大了 100 倍传输,接收端收到数据后要响应的缩小 100 倍。各个气体的小数点位数可以根据量程上的小数点位数获得。

②、单地址的主动发送模式通信示例:

上图是一个四合一的有毒气体检测仪,包含了四种气体,100.0ppm 的 SO2,50.00mg/m3 的 VOCs,30.00%VOL 的 O2,还有 100.0%LEL 的 CH4,在系统菜单下,给每个气体分配了一个序号,SO2 为 1, VOCs 为 2,O2 为 3,CH4 为 4。

例如系统设置界面下的"本机地址"为 1,则检测仪会间隔"数据主动发送间隔"时间主动的通过 RS485 接口向外发送数据,格式如下:

01 03 10 00 64 06 C2 08 16 02 28 00 01 00 02 00 01 00 03 CRCL CRCH

0x01: 本机地址;

0x03: 功能码;

0x10: 后续有 0x10 个字节是数据,即 16 个数据;

0x0064: SO2 的无小数点的实时浓度, 100, 实际浓度除以 10, 即 10.0ppm;

0x06C2: VOCs 的无小数点的实时浓度, 1730, 实际浓度除以 100, 即 17.30mg/m3;

0x0816: O2 的无小数点的实时浓度, 2070, 实际浓度除以 100, 即 20.70%VOL;

0x0228: CH4 的无小数点的实时浓度,552,实际浓度除以10,即55.2%VOL;

0x0001: SO2 的运行状态,正常;

0x0002: VOCs 的运行状态,低报;

0x0001: O2 的运行状态,正常;

0x0003: CH4 的运行状态, 高报;

CRCL: CRC16 冗余校验码低字节;

CRCH: CRC16 冗余校验码高字节。

③、使用"本机地址"一次读取多个实时浓度数据:被动-1和被动-2模式下均可

在"系统设置"列表下的第 0x00A0 号地址开始存储了各个气体的实时浓度和运行状态,第 0x00B0 号地址开始存储了各个气体的报警阈值。

一条指令读取 4 种气体实时浓度,格式如下:

主机发送: 01 03 00 A0 00 04 44 2B

0x01: 此检测仪"系统设置"下的"本机地址"

0x03: 读保持寄存器

0x00A0: 读保持寄存器的起始地址,即从第 0x00A0 号地址开始读取

0x0004: 读保持寄存器的个数,连续读 4 个

442B: 即 0x2B44, CRC16 循环冗余校验码,发送指令时低位在前高位在后

从机回复: 01 03 08 00 64 06 C2 08 16 02 28 2B 7C

0x01: 此检测仪"系统设置"下的"本机地址"

0x03: 读保持寄存器

0x08: 后面有 8 个字节的数据,不包含末尾的 2 个 CRC16 校验码

0x0064: SO2 的无小数点的实时浓度, 100, 实际浓度除以 10, 即 10.0ppm;

0x06C2: VOCs 的无小数点的实时浓度, 1730, 实际浓度除以 100, 即 17.30mg/m3; 0x0816: O2 的无小数点的实时浓度, 2070, 实际浓度除以 100, 即 20.70%VOL;

0x0228: CH4 的无小数点的实时浓度,552,实际浓度除以10,即55.2%VOL;

2B7C: 即 0x7C2B, CRC16 循环冗余校验码,发送指令时低位在前高位在后

Modbus 错误码(10 进制)

功能码	说明
01	非法功能。对于服务器(或从站)来说,询问中接收到的功能码是不可允许的操作,可能是因为功能码仅适用于新设备而被选单元中不可实现同时,还指出服务器(或从站)在错误状态中处理这种请求,例如:它是未配置的,且要求返回寄存器值。
02	非法数据地址。对于服务器(或从站)来说,询问中接收的数据地址是不可允许的地址,特别是参考号和传输长度的组合是无效的。对于带有 100 个寄存器的控制器来说,偏移量 96 和长度 4 的请求会成功,而偏移量 96 和长度 5 的请求将产生异常码 02。
03	非法数据值。对于服务器(或从站)来说,询问中包括的值是不可允许的值。该值指示了组合请求剩余结构中的故障。例如:隐含长度是不正确的。modbus协议不知道任何特殊寄存器的任何特殊值的重要意义,寄存器中被提交存储的数据项有一个应用程序期望之外的值。
04	从站设备故障。当服务器(或从站)正在设法执行请求的操作时,产生不可重 新获得的差错。
05	确认。与编程命令一起使用,服务器(或从站)已经接受请求,并且正在处理这个请求,但是需要长持续时间进行这些操作,返回这个响应防止在客户机(或主站)中发生超时错误,客户机(或主机)可以继续发送轮询程序完成报文来确认是否完成处理。
06	从属设备忙。与编程命令一起使用。服务器(或从站)正在处理长持续时间的程序 命令。张服务器(或从站)空闲时,用户(或主站)应该稍后重新传输报文。
08	CRC16 码校验错误,从站接收来自服务器(或主机)的数据后,计算数据的校验码异常,表明接收的数据本身的校验码是错误的,或者在传输过程中数据发生了变化,导致校验失败。